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This paper is concerned with the modeling of the magnetic shape memory alloy (MSMA)
constitutive response caused by the reorientation of martensitic variants. Following a sum-
mary of the constitutive model previously proposed by the authors, the nonlinear and
hysteretic strain and magnetization response of MSMAs are investigated for two main
loading cases, namely the magnetic field-induced reorientation of variants under constant
uniaxial stress and the stress-induced reorientation under constant magnetic field. It is
demonstrated in this work that the model captures the loading history dependence of the
constitutive behavior through the evolution of internal state variables. Complex loading
cases are also presented in which the sequence of the application of the stress and mag-
netic field strongly influences the predicted response. The relation of critical stresses and
magnetic fields for the activation of the reorientation process are visualized in a variant
reorientation diagram on which the considered loading paths are superimposed.

I. Introduction

Due to their ability to produce recoverable magnetic field-induced strains at least one order of magnitude
higher than those of ordinary magnetostrictive or piezomagnetic materials, magnetic shape memory alloys
have intensely been researched since the first studies of their behavior were reported by Ullakko et al.,1

who found magnetic field-induced strains of nearly 0.2% in stress-free experiments on martensitic NiMnGa
single crystals. Extensive experimental work on single crystals of off-stoichiometric intermetallic compounds
near the composition Ni2MnGa have yielded strains of up to 10%.2 Other alloys have been investigated,
such as FePd,3,4 FeNiCoTi5 and CoNiAL.6 In addition to the large recoverable strains, which are caused
by the field-driven reorientation of martensitic variants, magnetic shape memory alloys are characterized by
the nonlinear and hysteretic nature of their response, as well as the coupling of the shape change and the
nonlinear change in the magnetization.

MSMA are attractive materials for actuator and sensor design,7,8 which are particularly important for
aerospace applications. Examples of applications of smart structures technology in which shape memory
alloys (SMAs) have been employed include rotorcraft systems9,10 and SMA actuated reconfigurable wings.11

Magnetic shape memory alloys actuators, which have now become commercially available on a limited scale,12

exhibit a greater actuation bandwidth than conventional shape memory alloys, because their actuation
frequency is not limited by heat transfer. They may therefore replace SMA actuators in certain future
applications. In the design process of MSMA actuators, it is inevitable that the intrinsic coupling between
mechanical and magnetic effects in these materials be addressed. A reliable constitutive model for numerical
analysis is needed as a tool in the development process to go beyond trial-and-error development techniques
involving extensive experimental testing.

Several constitutive models for MSMAs have been proposed in the literature.13–17 Most of these formu-
lations rely on the minimization of a free energy expression, which searches for equilibrium points in ideal
processes. This paper and previous work by the authors,18–21 however, is concerned with the influence of
dissipative effects on the evolution of thermodynamic states and thus the loading history dependence of
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the constitutive response; an approach that has yielded powerful phenomenological models for conventional
shape memory alloys.22,23

The most commonly investigated MSMA is NiMnGa, in which the 5M (five-layered modulated) marten-
site24,25 consists of three tetragonal variants. If in the martensitic phase a uniaxial compressive stress and
a perpendicular magnetic field are applied along the appropriate crystallographic directions, one variant is
stress-favored, one magnetic field-favored and the third variant is eliminated. This competing influence of
mechanical and magnetic loads in a two variant setup is the focus of the modeling efforts in this paper. Two
main loading cases are considered: i) variable magnetic field under constant stress; ii) variable stress under
constant magnetic field. The term magnetic field-induced strain (MFIS) will be used only if the variant
reorientation is solely driven by the magnetic field, otherwise the more general term reorientation strain will
be employed. Furthermore, the influence of the history of magnetomechanical loading on the constitutive
response is investigated by varying the order in which the stress and the magnetic field are varied. A vari-
ant reorientation diagram is proposed to be used as a modeling tool that can provide great inside into the
expected material response under complex loading paths.

Section II presents a summary of the MSMA constitutive model equations. Section III deals with the
reduction of the model for special loading cases as well as the calibration of model parameters and presents
the predicted constitutive response, which is discussed in detail. The paper concludes with a discussion of
the presented results and an outlook on future modeling efforts in Section IV.

II. MSMA Constitutive Equations

In this section a summary of the framework for the MSMA constitutive model previously proposed by
the authors18–20 is given. The model is concerned with the stress and magnetic field-induced rearrange-
ment of martensitic variants and predicts the associated nonlinear, stress-dependent reorientation strain and
magnetization hysteresis curves typically observed in experiments.26,26–28 For the loading case of variable
magnetic field and constant uniaxial stress, such experimental data, taken from the literature, is presented
in Section III, cf. figure 2(a) on page 7 and figure 3 on page 10, in the context of validating the constitutive
model predictions.

The approach is based on the formulation of a Gibbs free energy function G, in which the stress σ

and the magnetic field strength H are the independent state variables. The constitutive equations for
the dependent state variables, namely the elastic strain εe and the magnetization M, are derived by taking
partial derivatives of the free energy function; a procedure that is consistent with thermodynamic restrictions
and follows the methodology of Coleman and Noll.29,30 Dissipative effects associated with twin boundary
or magnetic domain wall motion, which are reflected in the macroscopically observed hysteretic nature of
the material response, are taken into account by a set of internal state variables. The evolution of these
internal state variables captures the loading history dependence of the constitutive response. Motivated by
microstructural observations31,32 the martensitic variant volume fraction ξ, the magnetic domain volume
fraction α and the angles between the magnetization vectors and the magnetic easy axes in each domain, are
chosen as the appropriate set of internal state variables. To keep the formulation simple, cases are considered
in which, through proper initial stress application, only two martensitic variants coexist. The nomenclature
is such that the volume fraction of the compressive stress-favored variant 1 is denoted ξ, while accordingly
that of the perpendicular magnetic field-favored variant 2 is 1 − ξ.

The energy terms that have been identified as relevant for the magnetic shape memory effect and therefore
contribute to the free energy expression are the elastic strain energy, the Zeeman energy and the magnetocrys-
talline anisotropy energy. The Zeeman or external field energy33,34 aims to align the local magnetization
with the applied magnetic field. The magnetocrystalline or short magnetic anisotropy energy can be viewed
as the energy stored in the material due to the work done by an applied field in rotating the magnetization
away from the magnetic easy axes.35,36 Accordingly, the specific form of the Gibbs free energy for the Kiefer
and Lagoudas model19 is given by

G = Ĝ(σ,H, ξ, α, θi)

= −
1

2ρ
σ :S(ξ)σ −

µ0

ρ
M

eff
(ξ, α, θi)·H + G

an
(ξ, α, θi) + G

mix
+ G0 ,

(1)

where ρ is the mass density and µ0 is the permeability of free space. The effective elastic compliance S,
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effective magnetization M
eff and effective magnetic anisotropy energy Gan are defined as

S := (1 − ξ)S
V1 + ξS

V2 = S
V1 + ξ∆S , ∆S := S

V2 − S
V1 ; (2a)

M
eff

:= (1 − ξ)M
V1 + ξM

V2 (2b)

= (1 − ξ)
[

(1 − α)M
1
(θ1) + αM

3
(θ3)

]

+ ξ
[

(1 − α)M
2
(θ2) + αM

4
(θ4)

]

;

G
an

:= (1 − ξ)G
an,V1 + ξG

an,V2 (2c)

= (1 − ξ)
[

(1 − α)G
an,1

(θ1) + αG
an,3

(θ3)
]

+ ξ
[

(1 − α)G
an,2

(θ2) + αG
an,4

(θ4)
]

,

where the magnetization vectors M
i are defined as

M
1

:= −M
sat

(

cos(θ1) ex + sin(θ1) ey

)

, M
2

:= M
sat

(

sin(θ2) ex − cos(θ2) ey

)

,

M
3

:= M
sat

(

cos(θ3) ex + sin(θ3) ey

)

, M
4

:= M
sat

(

− sin(θ4) ex + cos(θ4) ey

)

.
(3)

Gmix is a mixing term19 and G0 is the reference state value of the Gibbs free energy. The anisotropy energy
contributions by the individual magnetic domains Gan,i can, for an assumed uniaxial symmetry, be expressed
as a series expansion of the form37

G
an,i

=
N

∑

n=1

Kn sin2n(θ) , (4)

of which only the first term will be considered in the current model.

The evolution of internal state variables must satisfy the second law of thermodynamics in form of the
Clausius-Duhem inequality, which in this case can be written as19

πξξ̇ +

4
∑

i

πθiθi ≥ 0 . (5)

From physical observations it is reasonable to assume that the rotation of the magnetization vectors away
from the magnetic easy axes is a thermodynamically reversible process.35,37 According to Eq. (5) this
implies that the driving force for dissipative processes associated with the evolution of the rotation angles
must vanisha, i. e.

πθi := −ρ
∂Ĝ

∂θi

≡ 0 . (6)

These constraints will be utilized to eliminated the explicit dependence of the constitutive equations on the
rotation angles θi.

The evolution of magnetic domains, although accounted for in the general modeling framework, has been
neglected in this paper. This simplification is based on the idea that unfavorable domains are eliminated
at relatively low fields,2,38 such that they do not significantly influence the magnetic field-induced variant
reorientation process. In Section III.A the validity of this assumption will be evaluated by comparing pre-
dicted magnetization curve with experimental data. For the case of fixed magnetic domain structure, the
driving force πα need not be considered. The domain volume fraction in this case takes the value of α = 1,
for Hy >0, and α = 0 for Hy <0, which leads to simplified forms of the expressions (1), (2b).

The remaining equations for the rate-independent MSMA constitutive model are summarized in table 1
on the following page. For more detail the reader is referred to earlier publications by the authors.19,20

Explicit forms of the expressions ε(σ,H, ξ), M(σ,H, ξ) and πξ(σ,H, ξ) will be given in the following section
in which the presented model equations are reduced for the two discussed loading cases.

aTo avoid misunderstanding, this does not mean that the rotation angles are fixed, but rather that no dissipation is associated
with the rotation of the magnetization.
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Table 1. Summary of the equations for the Kiefer and Lagoudas MSMA constitutive
model.

Strain and Magnetization:

ε = ε
e + ε

r + ε̄
off , ε

e := −ρ
∂Ĝ

∂σ

, ε̇
r = Λrξ̇ .

M := −
ρ

µ0

∂Ĝ

∂H
,

Driving Forces for Variant Reorientation and Magnetization Rotation

πξ := σ :Λ
r
− ρ

∂Ĝ

∂ξ
, πθi := −ρ

∂Ĝ

∂θi

.

Reorientation Function:

Φξ(σ,H, ξ) =







πξ − Y ξ,c , ξ̇ > 0

−πξ − Y ξ,c , ξ̇ < 0
.

Kuhn-Tucker Loading Conditions:

Φξ(σ,H, ξ) ≤ 0, Φξξ̇ = 0 .

Trigonometric Hardening Function:

f ξ,c = ρGmix ;
∂f ξ,c

∂ξ
=







−Ac
[

π − cos−1(2ξ − 1)
]

+ (B c

1 + B c

2) , ξ̇ > 0

−C c
[

π − cos−1(2ξ − 1)
]

+ (B c

1 − B c

2) , ξ̇ < 0

.

III. MSMA Response under Specific Magnetomechanical Loading Paths.

A. Variant reorientation under a variable magnetic field transverse to a constant uniaxial

stress.

1. Reduced model equations

First, the most common loading case is considered in which the MSMA is subjected to different levels
of constant compressive uniaxial stress (x-direction) and a variable magnetic field perpendicular to the
mechanical load (y-direction)b.

Following the discussion of Section II, it is assumed that the magnetic domain volume fraction is fixed
and switches from α=1 to α=0 when the applied magnetic field switches sign. All of the reduced equations
presented in this section are derived for the case of α=1.c For the chosen coordinate system, the non-zero
components of the reorientation strain tensor are given by Λr

11 = −Λr

22 = εr,max. The maximum strain value
can be measured experimentally or is often approximated as εr,max = (a− c)/a, where a and c are the lattice
parameters of martensite. Reorientation strain tensors for arbitrary single crystal orientations have been
discussed in the literature.4,24,39

With the Gibbs free energy given by Eq. (1) and utilizing the specified simplifications, the constraint (6)
for θ3 takes the form

πθ3 := −ρ
∂Ĝ

∂θ3

= (1 − ξ)
[

µ0M
sat

Hy − 2ρK1 sin(θ3)
]

cos(θ3) = 0 , (7)

bThe coordinate system is chosen such that its directions align with the <100>m-directions of the considered 5M tetragonal
martensite.

cSince all equations in Section II were specified for the general case, it is straightforward to derive their counterparts for
α=0.
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which leads to

sin(θ3) =
µ0M

sat

2ρK1

Hy , (8)

for 0 ≤ θ3 < π
2 and 0 ≤ ξ < 1. Since the easy axis of variant 2 is aligned with the direction of the applied field,

its magnetization vector does not rotate, such that the corresponding constraint πθ4 =0 is identically satisfied.

For the considered loading case and using constraint (8), the driving force for variant rearrangement reduces
to

πξ = σεr,max + µ0M
sat

Hy −
(µ0M

sat)2

4ρK1

H2
y −

∂f ξ

∂ξ
, (9)

where ∂f
ξ

∂ξ
has been specified in table 1 and the difference in the elastic compliance of the variants ∆S has

been neglected. By enforcing the Kuhn-Tucker loading conditions and using the reorientation function of
table 1 on the previous page in combination with the driving force expression (9), the evolution equations
for the martensitic variant volume fraction ξ are derived as follows:

For the forward reorientation process (Variant 1 → Variant 2, ξ̇ >0):

Φ
ξ
ξ̇ = 0 ⇒ Φ

ξ
= 0 ⇒ πξ = Y

ξ,c
.

πξ = σεr,max + µ0M
sat

Hy −
(µ0M

sat)2

4ρK1

H2
y + A

c
[

π − cos−1(2ξ − 1)
]

− B
c

1 − B
c

2 = Y
ξ,c

. (10)

Due its scalar nature one can solve for ξ in closed-form, which yields

ξ
(1,2)

=
1

2
cos

(

−
1

Ac

[

− σεr,max − µ0M
sat

Hy +
(µ0M

sat)2

4ρK1

H2
y + B

c

1 + B
c

2 + Y
ξ,c

]

+ π
)

+
1

2
. (11)

Similarly it follows for the reverse reorientation process (Variant 2 → Variant 1, ξ̇ <0):

Φ
ξ
ξ̇ = 0 ⇒ Φ

ξ
= 0 ⇒ πξ = −Y

ξ,c
.

πξ = σεr,max + µ0M
sat

Hy −
(µ0M

sat)2

4ρK1

H2
y + C

c
[

π − cos−1(2ξ − 1)
]

− B
c

1 + B
c

2 = −Y
ξ,c

, (12)

so that

ξ
(2,1)

=
1

2
cos

(

−
1

C c

[

− σεr,max − µ0M
sat

Hy +
(µ0M

sat)2

4ρK1

H2
y + B

c

1 − B
c

2 − Y
ξ,pl

]

+ π
)

+
1

2
. (13)

For the considered loading case, all the necessary equations have now been derived. The next section discusses
the calibration of model parameters.

2. Calibration of the model parameters

The material parameters consist of the magnetic anisotropy constant ρK1, the saturation magnetization
M sat, the maximum reorientation strain εr,max, which follow from standard experiments described in the
literature.28,40 Additional input are the critical magnetic field values H s(1,2)

y , H f(1,2)

y , H s(2,1)

y and H f(2,1)

y ,
which denote the onset and termination of the forward and reverse magnetic field-induced reorientation pro-
cess, respectively. They are experimentally obtained from one magnetic field-induced strain hysteresis loop,
cf. figure 2(a) on page 7, at the stress level σ∗, which can be arbitrarily chosen in the range between zero and
the blocking stress. The general relations between the material and the model parameters are listed in table
2, which have been derived by evaluating the evolution equations for the martensitic variant volume fraction
in the forward (11) and reverse (13) reorientation process at ξ =0 and ξ = ξcrit, respectively, and enforcing
continuity of the hardening function at ξ=1. ξcrit is the maximum volume fraction of variant 2 obtained at
the stress level σ∗, which can be estimated by relating the maximum reorientation strain for this stress level
to the maximum achievable reorientation strain εr,max. For the case of complete reorientation ξcrit is equal
to 1 and the listed relations simplify.
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Table 2. Relations between material constants and model parameters.

Ac = µ0M
sat

(π−cos−1(2ξ
crit

−1))

(

H s(1,2)

y − H f(1,2)

y

)

− (µ0M sat)2

4πρK1

[

(

H s(1,2)

y

)2

−
(

H f(1,2)

y

)2
]

B c

1 = 1
2µ0M

sat
(

H s(1,2)

y + H f(2,1)

y

)

− (µ0M sat)2

8ρK1

[

(

H s(1,2)

y

)2

+
(

H f(2,1)

y

)2
]

+ σ∗ εr,max

B c

2 = π
4

(

Ac − C c
)

C c = µ0M
sat

(π−cos−1(2ξ
crit

−1))

(

H f(2,1)

y − H s(2,1)

y

)

− (µ0M sat)2

4πρK1

[

(

H f(2,1)

y

)2

−
(

H s(2,1)

y

)2
]

Y ξ,c = 1
2µ0M

sat
(

H s(1,2)

y − H f(2,1)

y

)

− (µ0M sat)2

8ρK1

[

(

H s(1,2)

y

)2

−
(

H f(2,1)

y

)2
]

− B c

2

This methodology was employed to obtain the model parameters listed in table 3, which also specifies
the material parameters that were extracted from experimental data published by Heczko et al.25 It should
be pointed out that, due to the sensitivity and nonlinear nature of the constitutive model, calibrating
material parameters can be a tedious effort. Particular calibration strategies and parameters optimization
methods can be used to obtain better model parameter sets. However, once the model parameters have been
calibrated, all model predictions are performed without readjusting the parameters.

Table 3. Material parameters for the considered Ni50.7Mn28.4Ga20.9 composition, and the re-
sulting hardening and hysteresis parameters.

Material Parameters Model Parameters

Quantity Value Unit Quantity Value Unit Quantity Value Unit

ρK1 167.0 kJm−3 µ0H
s(1,2)

y 0.2 T Ac −11.747 kPa

M sat 510.0 kAm−1 µ0H
f(1,2)

y 0.32 T B c

1 −7.161 kPa

εr,max 6.2 % µ0H
s(2,1)

y 0.0 T B c

2 9.761 kPa

σ∗ −0.2 MPa µ0H
f(2,1)

y −0.135 T C c −24.174 kPa

Y ξ,c 71.425 kPa

3. Model predictions

The constitutive model for MSMA has been proposed in Section II, and the constitutive equations have
been simplified for the special loading case of constant uniaxial stress and variable transverse magnetic field
in Section III.A.1. The model parameters have been calibrated in Section III.A.2. This section presents
numerical results for the predicted response for the loading case of variable magnetic field under constant
stress.

Before specific response curves are presented, it is helpful to gain more insight into the material response
expected under a particular loading path, by consulting a variant reorientation diagram, which is a graphical
representation of the stress dependence of the activation fields for the variant reorientation process. Simi-
larly, the visualization of the martensitic phase transformation conditions in phase diagrams is common for
conventional shape memory alloys.41,42 Figure 1 depicts the numerical variant reorientation diagram for
the considered composition in terms of the stress vs. magnetic field. It has been constructed by evaluating
the reorientation conditions (10) and (12) at ξ =0 and ξ =1, respectively. A similar reorientation diagram
was previously proposed by the authors19 for an earlier version of the constitutive model, in which the
magnetization was assumed to be fixed to the respective magnetic easy axes.

At the stress level of σ∗ =−0.2 MPa, for which the model parameters were calibrated, the loading paths
intersects the activation lines, at the critical magnetic field values H s(1,2)

y (σ∗), H f(1,2)

y (σ∗), H s(2,1)

y (σ∗), whose

numerical values were specified in Table 3. Note that the value of H f(2,1)

y (σ∗) is outside of the physically
meaningful region, reflecting the fact that the reverse reorientation process is not completed for the considered
stress level. For the model parameter calibration this value was estimated by using the magnitude of the
residual strain as additional input. The line at µ0H

crit =0.655T marks the critical magnetic field at which the
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magnetization in both variant has been fully aligned with the applied field, such that the variant reorientation
process is terminated. For cases of incomplete reorientation, the appropriate activation lines lie within the
regions bounded by the lines for ξ=0 and ξ=1 depicted in the reorientation diagram.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

|σ
xx

|  
[M

P
a]

µ
0
H

y
  [T]

crit
0 yHµ

1 2→

2 1→

0ξ =

1ξ =

1ξ =

0ξ =

s(1,2)
yH f(1,2)

yH
f(2,1)
yH

Figure 1. Numerical variant reorientation diagram in |σxx|-µ0Hy-
space. Dashed lines: magnetic loading at the constant stress levels
of -0.2, -1.0, -1.1 and -1.2 MPa.

Several important features can be
concluded from the variant reorientation
diagram for this particular set of param-
eters: i) the blocking stress is predicted
to be -1.33 MPa; ii) only in the range of 0
to -0.95 MPa is the maximum strain ob-
tained by complete variant reorientation.
For higher stress levels the reorientation
is only partial; iii) stress levels lower than
|σ|=0.2 MPa are insufficient to induce the
recovery of variant 1 when the magnetic
field is removed; iv) variant 1 can in fact
not be fully recovered under any constant
stress level, since the appropriate stress
level is above the blocking stress.

Figure 2(a) displays the resulting
magnetic field-induced strain curves for
several different stress levels. These
curves have been computed by utiliz-
ing the reorientation conditions (10) and
(12), the evolution equations for the vari-
ant volume fraction (11) and (13), the
proportionality of the reorientation strain
and ξ, cf. table 1, and the parameters
listed in table 3. Note that for reasons of comparison, the reorientation strain and not the total strain
has been plotted in this figure. The curve at -0.2 MPa has to be considered a simulation, since its experi-
mental equivalent was used to obtain the model parameters. The curves at all other stress levels, however,
are model predictions. It is again emphasized, that the same set of parameters has been used for all of the
predictions.
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(a) Predicted MFIS hysteresis curves at different stress lev-
els (solid lines) and comparison to experimental data (dashed
lines).25
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(b) Detail: MFIS hysteresis loop under -1.0 MPa.

Figure 2. Predicted magnetic field-induced strain curves under constant stress and variable perpendicular
magnetic field.
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One observes that the model is capable of capturing the nonlinear and hysteretic nature of the material
response. The predicted stress-dependent shape of the hysteresis curves reflects the fact that raising the
stress level delays the onset and the termination of the reorientation from the stress-favored to the magnetic
field-favored variant, such that higher magnetic fields are needed to initiate and complete the process. The
model also predicts the reduction of the obtainable MFIS with increasing stress level and the magnitude of
residual reorientation strain for each loop. The experimentally observed and predicted asymmetry of the
hysteresis loop has been termed the first cycle effect .26 Subsequent cycles are symmetric.

To explain the predicted evolution of the MFIS in more detail, figure 2(b) takes a closer look at the
hysteresis loop under -1.0 MPa. Different characteristic configurations along the loading path have been
numbered. For each of them table 4 shows a schematic representation of the variant volume fraction and the
magnetization rotation along with listing the current values of the applied magnetic field, and the internal
variables, i. e. the reorientation strain, variant volume fraction and magnetization rotation angle. It should be
made clear that the configurations shown in table 4 are only schematics designed to illustrate the connection
of the macroscopic behavior to the evolution of the internal state variables. They do not represent the actual
distribution of the variants throughout a single crystal specimen.d

Table 4. Configuration schematics and data for the predicted -1.0 MPa MFIS hysteresis curve.

# Schematic µ0Hy εr

xx ξ θ3 # Schematic µ0Hy εr

xx ξ θ3(θ1)

1 0.0 T 0.0 % 0.0 0.0
◦

7 0.0+ T 1.67 % 0.27 0.0
◦

2 0.2 T 0.0 % 0.0 17.8
◦

8 0.0- T 1.67 % 0.27 0.0
◦

3 0.5 T 2.84 % 0.46 49.8
◦

9 −0.2 T 1.67 % 0.27 17.8
◦

4 0.65 T 5.92 % 0.95 90.0
◦

10 −0.5 T 2.84 % 0.46 49.8
◦

5 0.4 T 5.92 % 0.95 37.7
◦

11 −0.65 T 5.92 % 0.95 90.0
◦

6 0.05 T 4.68 % 0.75 4.4
◦

12 0.0- T 1.67 % 0.27 0.0
◦

The prediction starts with the depicted single variant, single domain configuration 1, where, as discussed,
it has been assumed that the error made by neglecting the magnetic domain wall motion at low magnetic
fields is small. The magnetic field of 0.2 T in configuration 2 is not sufficient to initiate the rearrangement
of variants against the mechanical stress and the internal resistance to twin boundary motion. However,
this field causes the magnetization vector in the first variant to rotate, by 17.8

◦

, and thus changes the
magnetization of the specimen, while keeping the reorientation strain at 0 %. By increasing the magnetic
field to the critical threshold value of 0.43 T the reorientation process is initiated and variant 2 nucleates.
The progress of the variant rearrangement is shown in configuration 3 at the exemplary applied field of 0.5
T. At this stage 46 % of the second variant have been produced, resulting in a MFIS of 2.84 %, while the
magnetization has rotated by 49.8

◦

.
The stress of -1.0 MPa, which favors variant 1 and therefore counteracts the reorientation process, is

higher than the resistance against 90
◦

rotation of the magnetization, as dictated by the magnetocrystalline
anisotropy energy. The magnetization in variant 1 therefore aligns with the external field before the re-
orientation process is completed, as indicated in schematic 4. Only 95 % of variant 2 and therefore 5.92%
reorientation strain can be magnetically induced at this stress level. The physical justification for this effect
is given by the consideration that when the magnetization in variant 1 has completely aligned with the
magnetic field the Zeeman energy difference across the twin boundary vanishes and the driving force (9)
does no longer depend on the magnetic field. Thus the reorientation process is terminated prematurely. In

dThe model assumes that at each continuum point there exists an underlying length scale at which a mixture of variants
and domains is observable, and that the constitutive response is an averaged behavior at that point. Whether this assumption
is fully justified for the case of single crystal specimen is still a subject of discussion.
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the presented model, this mechanism explains the reduction of the maximum magnetic field-induced with
increasing stress levels.

According to Eq. (8) the critical magnetic field at which the magnetization in variant 1 has fully rotated
is in the limit of θ3→

π
2 given by

H
crit

y =
2ρK1

µ0M
sat

. (14)

Note that the critical field is independent of the applied stress. The relative position of the critical field and
the activation field for the forward reorientation process on the magnetic field axes determines the amount
of strain produced at each stress level. As previously observed from the variant reorientation diagram in
figure 1 on page 7, the magnetic field-induced strain ranges from 0 % at the blocking stress to its theoretical
maximum of 6.2 % for stresses below |σ|=0.95 MPa.

When the magnetic field is subsequently decreased below H crit

y , to 0.4 T in configuration 5, for example,
the magnetization in variant 1 rotates back towards the magnetic easy axis but the MFIS stays constant. It
must be emphasized that the activation field for the reverse reorientation process is not 0.11 T, as the variant
reorientation diagram in figure 1 suggests for ξ=1, but rather at 0.08 T, which is the appropriate activation
field for ξ = 0.95. By further lowering the field, variant 2 is reduced to 75 % at 0.05 T in configuration 6,
while the magnetization rotation angle in variant 1 continues to decrease. However, for this stress level, not
all of variant 1 is recovered, even at complete removal of the magnetic field, and a residual MFIS of 1.67
% remains in configuration 7. As observable in figure 2(a) as well as the variant reorientation diagram in
figure 1 on page 7, higher compressive stresses help to recover a greater amount of variant 1, whereas at
compressive stress levels below 0.2 MPa none of the initial single variant 1 configuration is recovered. At zero
field in configuration 7 the magnetization vectors in both variants are aligned with their respective easy axes.
Since the effect of domain wall motion at low magnetic fields has been neglected, a non-zero macroscopic
magnetization is predicted by the model. The corresponding magnetization curves will be discussed shortly.

As a negative magnetic field is applied, the magnetization in both variants is assumed to instantaneously
switch directions as indicated in schematics 7 and 8. In configuration 9 the ratio of variants remains un-
changed, but the magnetization has rotated by 17.8

◦

. Due to the mixture of variants, the activation of
the reorientation process under a negative magnetic field is slightly delayed compared to the positive field
hysteresis loop, and occurs at -0.48 T, which is the appropriate activation value for ξ = 0.27. From this
point on, cf. configurations 10 and 11, the evolution of the magnetic field-induced strain is symmetric to its
positive counterpart, described above in detail. In terms of the residual strain, configuration 12 at the end
of the negative loop is identical to configurations 7 and 8 at the end of the positive and beginning of the
negative loop, respectively. Unless a single variant configuration is not purposely restored by temporarily
raising the stress level, the reorientation strain that is obtainable in subsequent cycles is reduced to 4.25 %,
which is the difference in strain between the configurations 7 (or 8, 9, 12) and 4 (or 5, 11). The reduction
of the obtainable MFIS is thus limited to the first cycle and hence the term first cycle effect. It should also
be clear that if the negative magnetic field had been applied first, the resulting hysteresis loop had been the
mirror image of the presented one.

The strong coupling between the deformation and changes in the magnetization that are characteristic
of MSMA constitutive response is made evident by considering the corresponding nonlinear magnetization
hysteresis curves. According to table 1 and Eqs. (2b), (3) and (8), the magnetization component in the
direction of the applied field is given by

My = ξM
sat

+ (1 − ξ)M
sat

sin(θ3) = ξM
sat

+ (1 − ξ)
µ0

(

M sat
)2

2ρK1

Hy . (15)

The magnetic field-induced magnetization curves plotted in figure 3 have been computed using Eq. (15) in
addition to the same set of constitutive equations used to predict the MFIS response. All of the depicted
curves represent model predictions, since the model parameters were entirely calibrated using information
from experimental strain curves.

Consider in particular the magnetization curve at the applied stress of −1.0 MPa, for which the corre-
sponding MFIS hysteresis loop has just been analyzed in detail. The configuration schematics of figure 2(b)
again prove helpful to understand the connection between the evolution of the internal variables and the
macroscopic material response. At low magnetic fields, when the material is in its initial single variant
state, the My-curve represents the magnetization of variant 1 along its magnetic hard axis, which occurs via
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magnetization rotation. Because only the first term in the expansion of the anisotropy energy (4) has been
considered, the magnetization My, according to (15), has a linear dependence on Hy in this region. From

Eq. (15), a slope of 1.53 T−1 has been calculated, a result which is in excellent agreement with the experi-
mental data (dashed line) measured by Heczko et al.25 According to Eq. (8), the magnetization rotation is
independent of the applied stress and all curves coincide in this initial region. The abrupt deviation from
linearity of the magnetization curves occurs when the stress-dependent critical magnetic field is reached and
the variant rearrangement is initiated. The magnetization in this region changes via the mechanism of vari-
ant rearrangement as well as magnetization rotation. The influence of the variant 2 magnetization becomes
more prominent as the reorientation process progresses. When the critical magnetic field for full magneti-
zation rotation in variant 1 has been reached, the reorientation process is terminated and the material is
magnetized to saturation in the direction of the applied magnetic field.
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Figure 3. Predicted magnetization hysteresis curves at different
stress levels (solid lines) and comparison to experimental data25

(dashed lines) at the stress levels of -0.2 and -1.0 MPa.

Since the forward reorientation pro-
cess is not completed for this stress level,
the magnetization rotation in the resid-
ual variant 1 volume fraction is reduced
when the magnetic field is subsequently
decreased below H crit, resulting again in
a linear variation of the magnetization.
The slope, however, is different from the
one initially observed for variant 1 at low
magnetic fields, since 95 % of the mate-
rial still consist of variant 2, whose mag-
netization remains unaffected by the de-
crease of the magnetic field. Another
abrupt nonlinear change in the magne-
tization occurs when the reverse reori-
entation process is activated. Due to
the residual variant 2 volume fraction of
27 %, a non-zero effective magnetization
is predicted at zero applied field, even
though the magnetization in variant 1 has
rotated back to its reference configura-
tion. The model also predicts a jump of
the magnetization curve as the applied
field switches sign. As discussed, this dis-
continuity is a direct consequence of neglecting the mechanism of domain wall motion. The prediction of
magnetization curves in this region thus deviates from the experimental measurements. However, the im-
portance of this difference has not been deemed sufficient to justify raising the level of complexity of the
model by accounting for the complicated evolution of the magnetic domains. This is only necessary if the
main goal is to predict the MSMA magnetization response at low magnetic fields. For actuator applications
the assumption of a fixed magnetic domain structure yields sufficiently accurate predictions.

B. Variant reorientation under a variable uniaxial stress and a constant transverse magnetic

field

A second loading case of practical interest is the reorientation of martensitic variants under mechanical loads
and constant magnetic field. Such loading occurs for example when an increase in the axial compressive
stress at the end of a magnetic cycle, such as one of those presented in figure 2(a) on page 7, is used to
restore the initial single variant 1 configuration.

In this section it is demonstrated that the model, without adjustment of the model parameters, predicts
the corresponding stress-strain response of the MSMA. Again the loading paths are graphically represented in
the variant reorientation diagram shown in figure 4. The sequence of loading is such that first the magnetic
field is raised to 1 T under the constant stress of -0.2 MPa, which is path I. The magnetic field is then
lowered to different values denoted H exp

y of 0.0, 0.2, 0.4, 0.6 and 0.8 T. Subsequently, the compressive stress
is increased to -5 MPa (IIa–IIe) under the respective constant magnetic field, lowered back to -0.2 MPa, and
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finally the magnetic field is decreased to 0 T under constant stress. To avoid confusion about the sequence
of loading, the different stages of the exemplary loading case I–IIa have been labeled A→H.
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Figure 4. Loading paths in the variant reorientation diagram. Ex-
emplary loading path A → H.

Although the loading paths are differ-
ent, the same components of the stress
and magnetic field are applied, such that
the same reduced model equations of Sec-
tion III.1 apply, namely the reorientation
conditions (10) and (12), the evolution
equations for the variant volume fraction
(11), (13) and the proportionality of the
reorientation strain and ξ. For the fol-
lowing model predictions the same set
of material parameters listed in table 3
on page 6 was used. Thus the numeri-
cally predicted variant reorientation dia-
gram figure 4 is identical to that previ-
ously shown in figure 1.

The predicted stress-induced reorien-
tation strain response at different mag-
netic field levels is shown in figure 5. For
the loading case I–IIa the reader should
correlate the points A→H to the corre-
sponding points in the variant reorienta-
tion diagram in figure 4.

Several aspects of this response de-
serve discussion. It is observed that in
this case the induced reorientation strain is the same for all loading paths IIa–IIe. This is because the
driving force for reorientation is (9) is proportional to the applied stress and is not influenced and therefore
not limited by the rotation of the magnetization in variant 1, as was the case for the magnetic field-induced
reorientation of variants.

Figure 5. Stress-induced reorientation strain vs. stress and mag-
netic field. Initial constant stress loop at -0.2 MPa.

These loading cases illustrate the
loading history dependence of the con-
stitutive response and the fact that the
model is able to capture it by account-
ing of the evolution of the microstruc-
ture through internal state variables. For
example, even though all loading paths
start and end at the same values of σxx =
0 MPa and µ0Hy = 0 T, the order in
which the magnetic field and stress are
applied is important, which is reflected in
the fact that cases I–IIa and I–IIb–I are
completely in variant 1, whereas the cases
I–IIc–I, I–IId–I and I–IIe–I are in variant
2 at the end of the loading path. Figure 6
and table 5 on the next page illustrate the
connection of the evolution of the internal
state variables and the observed macro-
scopic response for the exemplary loading
paths I-IId.

Initially the 1 T magnetic field is ap-
plied under the constant stress of -0.2
MPa. such that the response follows the
corresponding curve in figure 2(a). The magnetic field is then lowered to 0.6 T. Note that at this stress level
none of the variant 1 volume fraction is recovered. In configuration 1 the material therefore entirely consists
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Figure 6. Detail: Stress-induced reorientation strain hysteresis loop under 0.6 T, i. e. path IId.

of variant 2. The compressive stress completely reorients the variants, configurations 2–4, but the magnetic
field is so high, that the stress-induced variant 1 configuration 4 is not sustained, but rather reversed to
variant 2 as the mechanical load decreases, cf. configurations 5–7. As the magnetic field is subsequently re-
moved, the constant stress level of -0.2 MPa is not sufficient to recover variant 1. The loading paths IIa–IIe
can be explained in a similar manner.

Table 5. Configuration schematics and data for the strain hys-
teresis loop under 0.6 T.

# Schematic σxx µ0Hy εr

xx ξ θ3

1 −0.2 MPa 0.6 T 6.2 % 1.0 —

2 −2.87 MPa 0.6 T 6.2 % 1.0 —

3 −3.49 MPa 0.6 T 3.1 % 0.5 66.4
◦

4 −4.1 MPa 0.6 T 0.0 % 0.0 66.4
◦

5 −1.31 MPa 0.6 T 0.0 % 0.0 66.4
◦

6 −1.12 MPa 0.6 T 3.1 % 0.5 66.4
◦

7 −0.93 MPa 0.6 T 6.2 % 1.0 —

The corresponding stress-induced magnetization curves are shown in figure 7. It is interesting to note
that these hysteresis loops are different in nature than the magnetic field-induced magnetization curves
previously shown in figure 3 on page 10. The main reason is that, since the mechanical detwinning of variants
occurs at constant magnetic fields, the magnetization vectors in each variant do not rotate. Therefore the
only mechanism for changing the magnetization is the variant reorientation, whereas in the magnetic field-
induced case the magnetization rotation provided an additional mechanism. Furthermore, because of the
constant magnetic field, the normalized y-component of the magnetization does not reduce to zero even if the
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reorientation process is complete, so that the size of the magnetization hysteresis loop is stress-dependent,
whereas the same strain is induced for all loading paths. This is the opposite effect compared to that observed
for the magnetic field-induced case of Section III.A.

Figure 7. Normalized magnetization vs. stress and magnetic field. Initial constant stress loop at -0.2 MPa.

IV. Discussion

It has been shown that the constitutive model presented in this paper can successfully be applied to predict
the strain and magnetization response of magnetic shape memory alloys under complex loading conditions.
The model predictions demonstrate the potential of MSMAs for applications as sensors or actuators in smart
structures, where complex magnetomechanical loads are to be expected. In particular, the cases of magnetic
field-induced reorientation of martensitic variants under constant stress and stress-induced reorientation
under constant magnetic fields were discussed. Combinations of the above loading paths were used to
demonstrate the influence of the sequence of loading on the constitutive response. Important features of
the macroscopic behavior, such as the stress-dependence of the induced reorientation strain, the residual
reorientation strain and the first cycle effect were explained in detail by establishing the connection to the
evolution of the microstructure. It was shown that in the presented approach internal state variables account
for this evolution in a phenomenological sense, thereby introducing dissipative effects into the formulation.
In this manner the model predictions reflect the strong dependence of the MSMA response on the sequence
of loading; a feature that can not be achieved by models that rely entirely on the minimization of the free
energy.

Other interesting loading conditions that will be addressed in future modeling efforts involve multiple
components of the magnetic field. The x-component of the magnetic field favors the same variant as the
compressive x-component the stress and can therefore alternatively be used to recover the single variant 1
configuration. However, in this case the magnetization vectors in both variants are expected to rotate and
thus the magnetization response will be different from that observed in the mechanical detwinning case.

An important aspect of modeling the MSMA response under complex loading paths is the validation
of the predictions with the help of experimental data. These experiments, however, prove to be difficult
to conduct and for the work presented in this publication only limited data were available. More detailed
validations of the model for complex loading will be conducted in the future if the necessary data can be
obtained.

In order to design reliable MSMA applications it is also inevitable that one solves appropriate magne-
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tomechanical boundary problems. Even if the stress state can be assumed to be uniaxial and homogeneous,
such that the mechanical equilibrium equations are satisfied, this procedure at least involves solving mag-
netostatic problems for specific geometries, while accounting for the MSMA constitutive response. Such
problems have been addressed by the authors,21 and will also be the focus of future work.
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