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Abstract

Shape Memory Alloys (SMA) have recently been considered for applications where
dynamic loading is applied. An SMA body subjected to external dynamic loading
will experience large inelastic deformations that will propagate through the body
as phase transformation fronts. The wave propagation in a cylindrical SMA rod in-
duced by an impact loading is considered. Some applications of this model problem
include energy absorbing and vibration damping devices. The constitutive model
being used is the one by Lagoudas, Bo and Qidwai. The problem is solved numeri-
cally by an adaptive Finite Element Method (FEM) based on the Zienkiewicz-Zhu
error estimator. A model problem featuring a fixed impact stress load propagating
through the rod is solved and compared to known analytical solutions. The energy
dissipation capabilities of SMA materials are investigated for a square pulse model
problem at various operational temperatures. We then present experimental results
for wave propagation in SMA rods. A Hopkinson bar apparatus is used to make
a uniaxial test of a NiTi specimen. Strain history records by strain gauges placed
at different locations along the SMA rod are compared with numerical calculations
using the adaptive FEM technique.
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1 Introduction

There are many areas of application which can successfully utilize the unique
properties of SMAs. The research presented in this paper relates directly to
the design of SMA components capable of absorbing dynamic loads. Such
components can be integrated into critical parts of structures that may need
protection from impact loads. Examples include joints that connect the hull
of an underwater vehicle with its internal structure, tank armor, cargo con-
tainers, etc. Another promising field of applications includes various active
or passive vibration damping devices. Many different devices have been pro-
posed among which SMA elements (Yiu and Regelbrugge, 1995; Graesser,
1995), wires (Thomson et al., 1995; Fosdick and Ketema, 1998) or rods (Feng
and Li, 1996). In a recent paper (Lagoudas et al., 2001) the authors investigate
numerically the vibration damping capabilities of generic SMA components.
A related study (Mayes and Lagoudas, 2001) demonstrates experimentally the
feasibility of devices composed of NiTi SMA tubes.

Shape Memory Alloys are a class of materials that change their internal struc-
ture due to changes in temperature and/or externally applied loads. At high
temperatures and low stress levels the crystal lattice is in the high symmetry
austenite phase (A). At low temperatures or high stress levels the material
exists in a low symmetry martensite phase (M). The phase transition is diffu-
sionless and is characterized by shear deformations of entire regions inside the
material (Wayman, 1983). What makes SMA materials remarkably different
from ordinary metals is the shape memory effect and the effect of pseudoelas-
ticity which are associated with the specific way the phase transition occurs
(Funakubo, 1987). The shape memory effect allows material which has been
deformed while in the martensitic phase to recover its shape upon heating.
The mechanism behind this behavior is the ability of SMAs to allow detwin-
ning of the self-accomodated martensitic variants. The pseudelasticity in SMA
is their ability to support large recoverable inelastic strains. The primary way
in which such strains are created is the stress induced phase transition from
austenite to martensite. The deformations are recovered upon unloading. The
pseudoelastic response provides both energy dissipation capabilities and shape
recovery while utilizing the shape memory effect leads to dissipation of me-
chanical energy but the SMA component/structure has to be then reheated
to recover its shape.

Several constitutive models have been developed in recent years to model the
shape memory effect and pseudoelasticity of polycrystalline SMAs. Among the
most widely accepted rate independent models are the exponential (Tanaka,
1986), cosine (Liang and Rogers, 1990) and polynomial (Boyd and Lagoudas,
1996). Any of these models can be unified in the framework of a constitutive
model (Lagoudas et al., 1996; Boyd and Lagoudas, 1994) based on the selec-



tion of appropriate thermodynamic potentials. It has been shown there that
these three models can be obtained by specific selection for the form of the
Gibbs free energy. The constitutive model is extended in (Bo and Lagoudas,
1999a,b,c,d) to incorporate plastic deformations and to account for the evolu-
tion of the internal state variables during cyclic loading. In the model proposed
by (Brinson, 1993; Brinson and Lammering, 1993) the martensitic volume frac-
tion is subdivided in two parts to account for thermally and stress induced
phase transformation. A different approach is taken in (Abeyaratne et al.,
1993, 1994; Abeyaratne and Knowles, 1993) where the possibility for soften-
ing during phase transformation is considered. The model is rate dependent
and the hysteresis is modelled by an N shaped trilinear stress-strain curve.
Other authors such as (Patoor et al., 1996; Siderey et al., 1999; Sun and
Hwang, 1993a,b) use micromechanical techniques to average the response of
single crystal martensitic variants and obtain a model for the macroscopic be-
havior of polycrystalline SMAs. For further details on SMA models the reader
is referred to the review paper (Birman, 1996). In this paper we chose to use
the unified approach (Lagoudas et al., 1996), which can accommodate the rate
independent constitutive models for SMAs.

Classical rate-independent plasticity theory is not sufficient to describe the
behavior of SMA materials. While it cannot model properly the pseudoelastic
response it is still capable of partially! predicting the shape memory effect.
Theoretical developments on elasto-plastic wave propagation in long slender
rods dates back to the works of Von Karman (1942), Rakhmatulin (1945)
and Taylor (1958). Extensive experiments on elasto-plastic wave propagation
have been carried out by Bell (1962); Chiddister and Malvern (1963); Kol-
sky (1949); Clifton and Bodner (1966); Bodner and Clifton (1967) using a
split-Hopkinson bar apparatus. The technique itself was introduced by Kolsky
(1949). The reader is referred to classical texts on wave propagation such as
(Kolsky, 1963; Graff, 1975) for additional information. In recent years there
have been extensions to the Hopkinson technique (Nemat-Nasser et al., 1991)
that allow for dynamic test recovery in both tension and compression.

Abeyaratne and Knowles (1991) studied the dynamics of phase transformation
in piecewise linear elastic materials with non-monotone hysteresis. A unique
solution was obtained with the use of a kinetic relation controlling the rate of
the phase transformation together with a nucleation condition for the initia-
tion of the transformation to render a unique. The same authors extended their
analysis in (Abeyaratne and Knowles, 1994a,b) to account for thermal effects.
In a general setting Pence (1986) considered wave propagating in a nonlin-
ear elastic bar with a non-monotonic stress-strain relationship subjected to a
monotonically increasing load. It was found that for sufficiently high loads a
strain discontinuity associated with phase transformation is being created.

I without the strain recovery upon heating



In a recent paper (Chen and Lagoudas, 2000) the rate independent model for
polycrystalline SMAs (Lagoudas et al., 1996) is employed to obtain solutions
to the coupled thermomechanical problem for SMA materials with monotone
hardening behavior. The authors take into account the latent heat generation
and assuming adiabatic conditions they solve the problem by the method of
characteristics together with jump conditions that yield unique solutions. A
similar study (Bekker et al., 2002), but for different constitutive models (linear
and cubic) has been carried out for both isothermal and adiabatic conditions.

The complex nature of most constitutive laws for SMA materials however
makes direct integration of even the simplest uniaxial transient initial bound-
ary value problems (IBVP) very complicated. Closed form solutions can usu-
ally be obtained if certain simplifications in the model being used are assumed
e.g. constant material properties independent of the amount of phase trans-
formation (Bekker et al., 2002). Numerical attempts to solve this problem
usually employ Finite Difference (FD) schemes. Extensive numerical treat-
ment of the shock loading problem for SMA rods by finite difference scheme
has been done by (Jimenez-Vicktory, 1999). In this study it was shown that
explicit FD schemes either introduce too much numerical dissipation which
pollutes the solution or artificial viscosity techniques have to be used in order
to remove oscillations near shock discontinuities in the numerical solution. In a
different setting, (Oberaigner et al., 1996) investigates numerically the coupled
problem of wave propagation and heat transfer in an SMA rod. The authors
focus on stress pulses of low magnitude that causes only elastic deformations.
The temperature at one end of the SMA rod is chosen dynamically in a such
a way as to utilize the phase change due to the shape memory effect in order
to maximize the damping of the rod.

There has been limited amount of experimental work done on characterizing
the dynamic response of SMAs. An experimental study on the propagation of
shear waves in single crystal Cu-Al-Ni shape memory alloy has been done in
(Escobar and Clifton, 1993). Phase transition shock were not observed directly
due to their low propagation speed. Instead, their presence is inferred from
the measurements of the elastic waves at the rear end of the specimen. An
analytical attempt to model these experiments is presented in Abeyaratne
and Knowles (1997).

The main focus of this paper is the the one-dimensional dynamic problem of
loading an SMA rod under conditions of pseudoelasticity and shape memory
effect. We present an experiment on the wave propagation in a NiTi SMA
rod performed in a Hopkinson bar apparatus. The results are compared with
a FEM computational simulation. We utilize adaptive meshing techniques
based on the Zienkiewicz-Zhu error estimator (Zienkiewicz, 1987) in order to
improve the accuracy of the method and decrease computational time. The
pseudoelastic effect in SMAs can be activated after special conditioning, e.g.



marformung. Without such preparation specimens will exhibit either simple
plastic or/and detwinning transformations. There are substantial difficulties
in properly conditioning long NiTi rods in order to activate the pseudoelastic
effect. In addition there are also problems configuring an experimental setup in
order to test at elevated temperatures required to have pseudoelastic response.
The experiment presented in this paper is done under detwinning conditions.

We begin the discussion with a brief overview in Section 2 of the constitutive
laws, field equations and boundary conditions defining our problem. Then, in
Section 3.1 we outline the implementation of the FEM for the NiTi SMA. The
adaptive strategy is presented in Section 3.2. In order to verify the implemen-
tation of the adaptive FEM in Section 4.1 we solve a boundary value problem
with a step-function boundary condition for which there are existing analyt-
ical solutions in the literature. Then, in Section 4.2 we study a square pulse
model for two different thermomechanical paths and give expected values for
energy dissipation as the pulse propagates through the rod. Section 5 describes
the Hopkinson bar experiment and discusses the dynamic characterization of
SMA materials. Finally, in Section 6 we use the numerical schemes developed
in this paper to simulate the experimental results.

2 Field equations, boundary conditions and constitutive law for
the impact problem of SMA rods

We consider a thin cylindrical rod of constant cross-section and length L. We
associate with it a coordinate system with the origin being placed at the left
end of the rod and the Ox axis directed along the rod. The material points of
the rod occupy the interval Q = {x € R|0 < 2 < L}, where x is the material
or Lagrangian coordinate. The rod is initially stress free and is at rest. It is
then subjected to an impact load at its left end (x = 0). The right end (z = L)
remains stress free. The field equations and boundary conditions are presented
next.

2.1 Field equations

The rod is assumed to be long enough so the stress o(x,t) is uniaxial and
along with all other field variables depend only axial position and time. The
axial component of the displacement i denoted by u(z,t). We further assume
linearized strain so the axial component of the strain e(z,t) is related to the
displacement by e(z,t) = wu,(x,t). Finally, the density of the material p is
assumed constant. The balance of linear momentum and energy then read
(Graff, 1975; Malvern, 1977):



PUt = Oy (1)

pU + 5P = (w0 — gl ©)

where T'(z,t) is the temperature, U(x,t) the internal energy per unit volume
and q(z,t) is the heat flux in the positive z direction. We shall consider two
different types of boundary value problems depending on the difference in the
transformation behavior of the SMA materials.

The timescale of the impact problem is on the order of micro- to milliseconds.
Such time-intervals are too short for heat conduction to take place as well
as for convection to remove heat trough the lateral surface of the rod. The
physically meaningful initial-boundary value problems are either isothermal
or adiabatic. The first is used if no significant heat is generated during the
impact while the adiabatic problem is used otherwise.

The isothermal initial-boundary value problem is obtained from the field equa-
tions when we set constant temperature T'(z,t) = Ty throughout the rod. The
balance of energy is identically satisfied and only the equation of motion (1)
is considered. The initial conditions indicate that the rod is at rest:

U|t:0 =0, Ut‘t:O =0, U’t:o =0 (3)

The boundary conditions

O|e=0 = 00(t), Olo=r, =0 (4)

specify the impact stress oo(t)? applied to the left end of the rod. The right
end is kept stress free. Together (1), (3) and (4) form a well-posed hyperbolic
problem (Bekker, 2001).

For the adiabatic approximation one assumes that no heat conduction occurs
in the rod and no heat convection through the lateral surface. The heat con-
duction term ¢ in (2) is equal to zero so the balance of energy in conjunction
with (1) yield

Put = OUgy (5)

2 'We do not require continuity on og(t)



The initial conditions for displacement and stress (4) are complemented by
one more initial condition for the temperature:

T(x,0) =Ty (6)

where Ty is the initial temperature assumed constant along the length of the
bar. Thus the field equations (1),(5), initial conditions (4),(6) and boundary
condition (3) define the adiabatic problem.

2.2 Constitutive law

In order to complete the field equations and be able to solve the boundary
value problems we need to introduce a thermomechanical constitutive law that
will connect the stress and internal energy with the evolution of strains and
temperature. The hysteresis of the material is strongly dependent on the stress-
temperature path that is followed during the loading cycle. In reality there are
two distinct types(?) of martensite - twinned (self-accommodated) martensite
M?! and detwinned M¢?. The phase diagram for NiTi based SMAs is shown
on Figure 1. The phase diagram and the possible phase transformations are
explained in great detail in (Lagoudas and Shu, 1999). Let us briefly describe
all three possible ways inelastic deformations occur:

e Austenite to twinned martensite (A — M") and vice versa (M* — A). The
phase transition occurs during cooling or heating the material. The crystal
lattice changes from cubic in the austenite phase to monoclinic in the M*
phase. The four temperatures M, M A° A°l that are shown on the
phase diagram define the beginning and ending (at zero stress level) of this
type of transformation.

e Austenite to detwinned martensite (4 — M%) and vice versa (M? — A).
The phase transition is triggered by increase or decrease of stress levels.
The material behavior is referred to as pseudoelastic response if the loading
path is a closed loop that starts and ends at the same point in the austenite
region. These thermomechanical paths are also associated with large latent
heat generation during the phase transitions. The stress induced forward
transformation A — M? is exothermic while the backward transformation
M? — A is endothermic (Cory, 1985; McNichols, 1987). A very simple
subcase are the isothermal a) and adiabatic b) paths shown on Figure 1.

e Self-accommodated martensite to detwinned martensite (M* — M%). This
last type of inelastic deformation is not associated with a phase change but
with stress induced reorientation of martensitic variants. It is irreversible
upon unloading but the inelastic strains can be recovered if the material is
heated above A°/. This is the basis of the Shape Memory Effect (SME) which
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Fig. 1. Uniaxial stress phase diagram for a NiTi SMA material

we will not describe in details since it is outside the scope of our study. The
material constants defining this transition are the initiating stress level o
and ending stress level o/. This deformation can occur only at temperatures
below the M°®. It is not associated with any significant heat generation but
the linear thermoelastic response

In this paper we use the theory introduced by (Lagoudas et al., 1996) which is
formulated in terms of the Gibbs free energy GG and employs the volume frac-
tion of martensite £ as an internal variable. The martensitic volume fraction
¢ does not distinguish between the two types and denotes the volume fraction
of M% and M! combined. Later we shall see how this reflects on the ability
of the model to predict various thermomechanical paths. The general form of
the free energy is taken to be:

G =G(0,T,§) = —3,80 — ; (a(T — Tp) + ")

(7)
e ((7 )~ T (F) T 0+ 70

where ¢! inelastic transformation strain associated with the phase transforma-
tion. The function f(§) is taken to be a quadratic polynomial and is responsible
for the transformation hardening:

1M 4 (1 + p2)é, €0
fle =420 o T ®)
SPbAEE + (n — p2)§,  §<0



The material constants pb?, pb™ | 111 and ps define the transformation surfaces
and the hardening during the forward and reverse transitions. The remaining
material properties in (7) are effective compliance S, effective thermal ex-
pansion coefficient «, effective specific heat ¢, effective specific entropy at the
reference state sg and effective specific internal energy at the reference state
ug. They are chosen by the rule of mixtures (quantities with subscript A de-
note the appropriate material constant for the austenite phase and those with
subscript M for the martensite phase):

S =8 =8 +£(SY -8%)

a= a() =a’+¢a —at)
c= c§) =ct+ (M) (9)
so = so(§) = sy +&(sp" — s)
ug = ug(§) = up + &(up" — up)

The transformation strain &' with is connected with £ through the relation

el = Hsgn(o)& (10)

where H is a positive material constant Corresponding to the maximum trans-
formation strain. Taking into account that ¢ = —5= the following constitutive
relation is obtained:

0 =E(§)( - a(§)(T - Tp) - £'(¢)) (11)
where E(§) =1/S(€).

The transformation condition is based upon thermomechanical transformation
surfaces (see (Lagoudas et al., 1996)) which, in the 1-D case become the lines
on the ¢ — T diagram ® . The principle of maximum transformation dissipation
in conjunction with the second law of thermodynamics leads to the following
transformation surface:

oH + 1AS0? + Aao (T — Ty) + pAc ((T - TO) —Tln (Z))
+pAsT — 5L — pAug = £Y*

(12)

3 Note that they are not straight lines due to the presence of quadratic terms in
(12).



where Y* = —2pAS(A°F — M°%) — 1pAS(M°* — M°/ — A°T + A°5) and the
+Y* at the right hand side stands for the forward transformation surface
(A — M) and —Y* for the reverse transformation surface (M — A). This
transformation surfaces accurately model the material response away from
the detwinning range. When the thermomechanical loading path lies in the
lower left part of the phase diagram the transformation surface (12) deviates

from the actual one. (77?7 WE HAVE TO SAY SOMETHING 777)

The problem of latent heat generation becomes relevant if we consider that the
timescale of the problems under consideration is on the order of micro- to mil-
liseconds. Such time-intervals are too short for heat conduction to take place
as well as for heat convection to remove the heat trough the lateral surface
of the rod. Therefore dynamic loading with initial temperature 7' > A%/ and
with stress levels high enough to cause phase transformation will involve latent
heat release that cannot be dissipated in the surrounding environment. There-
fore material points where sufficient latent heat is generated will change their
position on the phase diagram and the material response at such points will
subsequently be altered. The most appropriate setting for the impact problem
in the pseudoelastic cases is the adiabatic initial-boundary value problem. On
the other hand when the material is initially in M® state the only possible
inelastic deformation is detwinning of martensite so the isothermal initial-
boundary value problem is sufficient for accurate physical description of the
impact problem.

2.8 Detwinning of martensite

As mentioned earlier the model used in this paper does not distinguish between
M% and M*. Consequently, the model can handle A < M? and A « M and
separately from them the detwinning transformation M* — M¢9. Suppose that
the material is completely in the M?* phase. During loading there will be no
latent heat effects and the loading is effectively isothermal. Since there is no
difference in the material constants between M* and M9 the transformation
criterion reduces to standard J, plasticity:

oH — 22 =0 (13)

The martensitic volume fraction £ now plays the role of the amount of detwin-
ning strains and H is the maximum detwinning strain. The material constants
in 7 trough 11 are taken to be the ones for martensite and only the forward
portion of the transformation hardening function is used:

10



£(6) = Hob'e? + v (14)

The material constant b? defines the hardening during the detwinning and
Y? = o,H states that the onset of the deformation occurs at the critical stress
level o,. The deformation is completed when ¢ = 1 which implies that pb? =
opH —Y?. Any further loading causes only elastic response. This recalibration
of the model allows us to use it effectively for detwinning transformations when
no stress induced martensite is produced.

2.4 Isentropic approximation

With the constitutive model fully defined we will substitute the actual expres-
sion for the internal energy in (5) in order to further simplify the adiabatic
heat equation. Let us express it in terms of the entropy S. We have

= P (15)

where 7 is the driving force for the transformation. Now, using a Legendre
transform U = G+ T'S + p~'oe we rewrite (5) as

pT'S; = w&, (16)

Further, combining (7) and (15)the particular form of the entropy for SMA
materials given in (Lagoudas et al., 1996) is

S =ac/p+ CIn(T/Ty) — Aspé + si (17)
where C' is the heat capacity (equal for austenite and martensite) and for

notational simplicity we introduced Asqy = si' — s to be the difference of the
specific entropies for the two phases. On substituting (17) into (16) we find:

pCT, = =T (ao — pAsyé), + & (18)

According to (Cory, 1985; McNichols, 1987) 7 < pAsyT for most SMAs (e.g.
for NiT1i the precise values yield 7/pAsoT < 1.3%) so we can approximate 18
by

pCTy = =T (a0 — pAsef), (19)

11



which is equivalent to the isentropic condition S; = 0. Equation 19 has the
advantage that it can be integrated directly:

T — Toe—p%(a(é)a—pASt)é) (20)

Here we explicitly stated the dependence of the temperature on the strain and
stress.

2.5  Tangent moduli

In order to develop the displacement based FEM model in the next section
we need to compute the increment of the stress with respect to an increment
in the strain.

In the isothermal case the thermal contribution (7T —Tp) in (11) is zero hence
(20) is identically satisfied so we have

do  Oo
= 7 21
de  Oe (21)
In the adiabatic case however we have
do 0o Qo dT
B Tl 22
de  Oe * dT de (22)
and in order to find the total derivative ‘;—‘5’ we need to express %—Z in closed

form. We do this by differentiating equations (11) and (20) with respect to
the strain and combine the result to obtain:

de Oe Oe T oT oT
(23)

ar _ _ (aa—g + (cAa — pAsO)%>/ (é + aa—g + (cAa — pAso)§>

For compactness we introduced the notation Aa = o™ — a?. Second order
. . . g do Do O o .

approximations for the partial derivatives 37, 5%, 5> and 5= are developed in

(Qidwai and Lagoudas, 2000) and thus we are able to compute numerically

the tangent moduli (21) and (22).

12



3 Numerical implementation

We begin with the numerical techniques used to implement the constitutive
laws. For given strain increment Ae and temperature increment AT’ the stress
o given by equation (11) is computed with the help of the cutting plane return-
mapping algorithm described in (Qidwai and Lagoudas, 2000). A displacement
based FEM provides strain increments. For isothermal problems AT = 0 and
thus the cutting-plane algorithm computes the required value for the stress. In
the adiabatic approximation however both the stress and temperature become
dependent on the strain increment Ae that is, we have to simultaneously
satisfy (11) and (20). This is done via an iterative process. We are given
values £, ¢ 7O for strain, stress and temperature which satisfy (11) and
(20) and a strain increment Ae. We then find (o,T") corresponding to strain
e = ¢ 4+ Ae trough the iteration (o™, T™) — (o, T) defined by:

o =B (e —a (T - Tp) — &™) (24)

T(n+1) _ Toe—p%((M(nﬂ)_pAsog(nH)) (25)

The first equation (24) uses the return-mapping algorithm to compute a new
value oY for the stress based on the old temperature 7. The second
equation (25) attempts to enforce the isentropic heat equation by computing
a corrected temperature 7 *+Y . The process is terminated when there is no
further progress, i.e. when |o("*1) — 0(”)‘ and ‘T(”“) - T(”)’ both drop below
certain tolerance. The algorithm showed linear convergence in the test cases,
however a detailed theoretical study is required to establish its properties.

3.1 FEM procedure

A standard semi-discrete Galerkin approximation is used to generate the weak
form of the problem:

Find u”(z,t) = SN, U;(t);(x) such that:

L L
,0/ i dx +/ o dr = —ouv" (26)
0 o

=0

Throughout this paper we used linear elements, that is:

span(vYy, ..., ¥n) = P[0, L]) ¢ H'([0, L])

13



As usual we have N — 1 number of elements (i.e. N nodes), the nodal values
for the displacement are given by U;(t) and whenever appropriate, we shall
use vector notation, i.e. U = (Uy,...,Uy)".

The problem reduces to a second order nonlinear system of ODEs:

MU + Ky (U)U = Feiy(U) (27)

where M is the mass matrix, K¢ (U) the stiffness matrix and f‘g(t) (U) is
the forcing term due to the nonlinear and thermal strains. The subscript £(¢)
stands to indicate that Fe(;)(U) and Keqy(U) do not depend on the displace-
ment only but on the whole loading history. However, for any given loading
history the stress and hence K(U) and F(U) can be viewed as well defined
single valued functions. Thus, without loss of generality we shall drop the
subscript £(¢) in the discussion that follows. They are given by:

L
Myj=p [ bapida (28)
L O; O
Ky(0)= [ B aﬁ s (29)
g L 0 iy
E(U)= [ B [(©) + )T - Ty)] da (30)
We introduce F(U) = F(U) — K(U)U which is the full forcing term *:
L Oy
F,(U) :—/0 (;i dz (31)
Equation (27) can be rewritten as
MU = F(U) (32)

The time integration in (32) (or (27))is done by the backward difference
method, a member of the Newmark family (Newmark, 1959; Reddy, 1993).
For t = t, the Newmark scheme is defined by °:

. 1 . .
U1 =U;+7U; + 57'2((1 —7)U; +79Ug4q) (33)
Us+1 :Us + T((l - O‘)Ijs + atjs—&-l) (34)

* Similarly, a more precise notation for F(U) would be F¢;)(U)
® The usual notation Uy := Ul(t,) is used

14



The backward difference method is obtained by setting a = % and v = 2. It

is easy to show (see (Reddy, 1993)) that the above difference equations lead
to the following system of nonlinear algebraic equations for Ugy:

2
— MU, = F(Ug) + G (35)
NT
or, equivalently to
2 .
(77-2M + K(Us-i-l)) Usp = F(US-H) + Gy (36)

where G, = M (A/%US + %US + l_TVUS) The nonlinear problem (35) is solved
by a quasi-Newtonian algorithm. The right-hand side is linearized:

Fy(U + AU) ~ f:

J

and further the chain rule is used to obtain:

_OR(U) _ (" 00 9y, [Fdo 0, 00
Li(0) = ou; — Jo 0U; Oz do = 0o de Ox 8md (37)

Numerically L is evaluated by substituting the appropriate expression for —‘;,

that is we use (21) in the isothermal case and (22) in the adiabatic case.

The solution Uy, is found through a Newton-Raphson iterative process. We
set U§°+’1 = U, and for n = 1,2... until convergence we compute:

vl = (M- nu) (PO - Luu e e) 6

V72

Of the two algorithms presented in (Qidwai and Lagoudas, 2000) we chose
the cutting plane method. For this method the partial derivatives are derived
in approximate form. Thus we get a quasi-Newton algorithm which showed
local quadratic convergence for small enough time-steps. In the case when
convergence Was being lost we applied the Picard (simple) iteration to (36).

Again, set US 41 = U, and for n = 1,2... until convergence compute:

15



n 2 n n - I- n
Ul = (M K@U ) (RO se) o e)

In all numerical examples tested the later iteration demonstrated global linear
convergence.

3.2 Adaptive mesh refinement

Let o be the stress at the end of the Newton algorithm at time step n, i.e.
t = t,. For linear elements o" is a piecewise constant function. Let us take
" to be the continuous, piecewise linear function in [0, L] which assumes the
averaged value of 0" at each nodal point. It has been shown in (Zienkiewicz,
1987) that for linear problems one has the convergence result:

—0as [[U-U"| =0 (40)

o =
0,[0,L] 0,[0,L]
The above norms can be localized over each element through the obvious

2 2
=3, h’ . The estimator is then defined on
0,[0,L] 0,e

the element level. For each element e we require that

ot — o

relation Hﬁh — ahH

7" ="

———2¢ < TOL (41)
|o Ho,[o,L}

We would like to emphasize two aspects of the actual implementation details
of the FE analysis. The linear system (35) (or (36)) is tridiagonal and poses
no computational problems. Secondly, the two most time-consuming parts of
the FE procedure are the assembly of the stiffness matrix at each Newton step
(because of the nonlinear dependance of the stiffness on the strain) and the
force vector. Both of them require the execution of the stress update proce-
dure via the return-mapping algorithm which is a computationally expensive
operation and is preformed for each element at each Newton step.

Clearly a global uniform h-refinement strategy used to achieve satisfactory
spatial discretization will impose severe restrictions on the problem size due
to the assembly time issues. In order to avoid this we used the Zienkiewicz-
Zhu error estimator to perform adaptive meshing. The local criterion (41) is
applied to each element at the completion of the Newton iteration. If there is
no further need to refine the mesh we proceed to the next time step. We found
that this approach works very well for the class of SMA hysteretic materials
under consideration.
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Table 1
Material parameters used in the SMA model

Material constant Value Description

EA 70 x 10° Pa Modulus of elasticity in austenite
EM 30 x 10° Pa Modulus of elasticity in martensite
H 0.05 Maximum transformation strain
do 7.0 x 10% Pa/(m3K)

Mef 2 °C Martensitic finish temperature
M©® 18 °C Martensitic start temperature

A°8 22 °C Austenitic start temperature

At 42 °C Austenitic finish temperature

4 Numerical Examples

We tested the implementation of the FEM in two different model problems.
The fixed impact stress model problem presented in the next section involves
only the loading part of the hysteresis and is therefore representative for both
isothermal and adiabatic thermomechanical paths (Figure 2). Further, the
main difference in the shape of the hysteresis loop for stress-induced martensite
and detwinning of martensite is the unloading part. Therefore, when we only
have loading it is sufficient to test only isothermal thermomechanical paths.

The second model problem that is considered is one for a square pulse. In this
case the shape of the unloading part of the hysteresis is important. In order
to stay close to the physical reality we tested two thermomechanical parts:
an adiabatic path in pseudo-elastic regime (7' > A°/) and an isothermal at
temperatures T' < M°®. The first part is interesting with the fact that it pro-
vides full shape recovery. The later path gives important insight into the wave
structure of the solution in the detwinning range. We shall later encounter
this type of thermomechanical paths in the modelling of the Hopkinson bar
experiment (Sections 5 and 6).

The material properties (Table 1) for all model problems are taken from (Qid-
wai and Lagoudas, 2000) and represent generic NiTi SMA properties. In ad-
dition to that for all model problems we had:

e 50cm NiTi SMA rod in an isothermal setup was considered

e Total simulation time was 100us so that the elastic front would not reach
the fixed right end of the rod

e All calculations were performed on a 933 Mhz PIII machine running Win-
dows NT.
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Fig. 2. An adiabatic and isothermal path for the material data in Table 1 at
T = 47 °C. Under adiabatic conditions higher stress levels are required to com-
plete the phase transformation compared to isothermal hysteresis loops.

4.1  Fized impact stress model problem

The fixed impact stress initial-boundary value problem ¢ is defined by setting
the boundary condition to be the two constant-state function:

0 fort<0
oo(t) = (42)
op for t > 0

We chose this particular boundary condition because the it is a natural start-
ing point for nonlinear hyperbolic equations and because there are existing
analytical solutions for it. Following (Bekker et al., 2002; Chen and Lagoudas,
2000) one can show that the following two-shock solution:

gpn for 0 <o <Vt
g(&?,t) =N Yel for Vzpht <x < Vyt (43)
0 for Vit <ax <L

where g = v, 0,¢ and oy, = 0y.

6 When the same initial boundary value problem is reformulated as an initial prob-
lem on an infinite domain with the initial condition being a step function it is usually
referred to as the Riemann problem.
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The pair (e, 0¢) is the point on the hysteresis curve that corresponds to the
start of the phase transformation.

The faster shock is a linear elastic shock and has velocity

e EA
/AR A el (44)
PEel P

The second, slower shock, is the transformation shock which travels with ve-
locity

00 — Oel
p(eo — €el)
This later shock specifies the point of abrupt phase transition - for x < V,,t the
material is an martensite and in the region x > V)t it it still in the austenite
phase. This is a truly self contained nonlinear shock because of the convex-
down nature of the function o(e) for € > ¢,,. For a general discussion on the
solution to the Riemann problem in nonlinear hyperbolic PDEs (Godlewsky
and Raviart, 1996, pg. 83-97). For a discussion specific to SMA materials the
reader is referred to (Chen and Lagoudas, 2000; Bekker, 2001).

Vo = (45)

For this model problem we set 0¢g = 400M Pa and T' = 47 °C'. Given this and
the material data one can compute the exact speed of the shocks:

Von =T723m/s (46)
Vi, =3294m/s (47)

The corresponding stress levels are o,, = 400M Pa and o, = 195M Pa.

The first thing to be observed when using a fixed mesh was the expected two-
shock structure of the solution. Results for two different mesh sizes are given
in Figure 3. We tested several members of the Newmark family and found
that best results are given by the backward difference method. Of the others,
explicit methods as well as the constant acceleration scheme were uncondi-
tionally unstable. Of those that were able to converge the backward difference
was found to dampen the hight frequency oscillations (Figure 3, left) in the
most efficient manner while introducing reasonable amounts of numerical dis-
sipations, mostly visible at the elastic shock. The quasi-Newton method used
to solve the nonlinear system (35) showed quadratic convergence at all time
steps but the first few ones. In that case we used the alternative direct iteration
(39).

19



100 100 i
|
|
0 0 :
|
|
© -100 | © -100 -
o o )
= = \
o -200 | & -200 A !
(%] (%]
o o :
& -300 & -300 1 )
|
|
-400 + -400 - :
|
|
-500 +———— -500 +——————————————
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
Axial position (meters) Axial position (meters)

Fig. 3. Stress profile at 30us for a fixed mesh with 500 (left) and 2000 elements
(right). Wiggles are eliminated for the finer spatial discretization. The position of
the elastic shock is marked by a dashed line.
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Fig. 4. Stress profile at 30us for an adaptive mesh with two different time steps.
The linear shock is quite smeared for a coarse time step 7 = 0.1us (left) while it
is much sharper when a finer step of 7 = 0.001us is used. Mesh nodes are marked
with black squares.

Quantitativly the results obtained by the FEM are in agreement with the
analytical solution. For a given time step both adaptive meshes and sufficiently
fine fixed meshes deliver the same solution. For a time step of 7 = 0.1us the
numerical value for the phase shock is found to travel with velocity in the
range 693 — 900m/s. The velocity of the elastic front is calculated to be in
the range 3316 4+ 420m/s. The smearing of the stress profile in the region of
the elastic shock is due to the time-integration scheme. When the time step
is decreased the slope becomes steeper and eventually converges to the shock.
For an adaptive solution with a time step 7 = 0.001us (the same computation
for a fixed mesh and such a time step was time prohibitive, see next paragraph)
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Table 2
Execution times for fixed and adaptive meshes

Time | Fixed Mesh Adaptive Mesh
Elements | Time (min) | Elements | Time (min)

10 ps 16000 56 161 1:12

20 ps 16000 113 199 2:37

40 ps 16000 226 256 6:10

80 us 16000 451 301 15

the calculated values for the phase shock are now in the range 723 — 733m/s
and the elastic shock is within the bounds 3256 —33661m/s. This indicates that
the lower bound for the transformation shock is very close to the actual value
(46) and the the elastic shock (47) is virtually in the middle of the suggested
numerical range. Secondly the error in the predicted value for the phase shock
decreases from 24% for 7 = 0.1us down to 1.3% for 7 = 0.001us. The error
in the elastic shock decreases from 12% to 1.1% which is a clear indication
that the algorithm is converging. Of course a theoretical analysis is required
to prove that.

A comparison for the two different meshes on Figure 3, both for a fixed time-
step of 7 = 0.1us at time ¢t = 30us shows that wiggles can be eliminated
by refining the mesh. One can also see that there are big regions in the bar
with no variation in the stress. This is fully utilized by the adaptive approach.
Figure 4 shows an adaptive FE solution with the same time parameters as
above and tolerance (see equation (41)) set to 10™* such that the accuracy is
comparable to the one of the fixed mesh with 2000 elements.

A more drastic comparison in the performance of the fixed and adaptive FE
methods is given in Table 2. The time step is 7 = 0.01us and the number of
elements for the fixed FEM is chosen so that the two solutions have compa-
rable accuracy. Both numerical solutions in this case are much more accurate
than the previous example because the smaller time step reduces the dissipa-
tion in the elastic shock. A comparison of the execution times for the fixed
and adaptive methods shows that the adaptive procedure delivers an order of
magnitude improvement in performance.

4.2 Energy dissipation for a square pulse

A more realistic initial-boundary value problem is one for which we do not
have continuous constant loading but a square pulse, i.e.
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0 for t<0
oo(t) = § ag for 0 <t < Thyse (48)

0 for t> Thuse

where T}, is the duration of the pulse. Unfortunately to the best of the
authors knowledge, there are no known analytical solutions for this problem.
Moreover, there are unresolved questions regarding the uniqueness of the weak
solution for times ¢ > T},,;5c when unloading takes place.

For this type of boundary condition which is much closer to practical cases we
can evaluate the energy dissipation due to phase transformation. If we define
P(7) to be the work done by the external forces at left end of the rod from
t =0tot =7, K(r) to be the kinetic energy of the rod (at time ¢t = 7) and
U(T) be the strain energy of the rod then we have the obvious relations

P(1)=[q o(0,t)u(0,t)dt
U(T):% fOLa(x,T)e(x,T)dx (49)

K(r)= 5 Jy pla(z, 7))*dz

S
—
\]
~—
|
—~

(50)

In our numerical calculations we only used the adaptive FEM procedure as the
examples in the previous subsection indicated that both the fixed and adaptive
method give the same solution but at much different computational cost. In all
numerical simulation we took 7T},,sc = 10us. We explored to different loading
conditions.

4.2.1 Adiabatic loading

The stress level used for the model problem was oo = 800M Pa and the initial
temperature was Ty = 47 °C > A°/. The stress level was chosen so that the
full hysteresis loop could be realized (see Figure 2).

The most noticeable feature observed is the structure of the unloading pulse.
Again we see a two wave shock structure that corresponds to the initial elastic
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Fig. 5. Stress profile at different instances of time for a square pulse in adiabatic
loading
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Fig. 6. Exploded view near the left end. The unloading (10us) produces two
right-travelling shock waves (20us). The faster unloading wave reflects off the trans-
formation shock (= 21us) and forms a left-travelling wave (24us). What follows is
a series of complicated reflections that gradually kills the initial non-linear shock.

unloading and the following reverse transformation M! — A. both of them
travel faster then the phase transformation shock. When the faster unloading
front catches up with it a left-travelling reflection is generated. Left-travelling
waves then partially reflect from the slower unloading shock and partially
continue to bounce off the left end of the rod which is now stress free. A
complicated series of reflections and/or rarefication waves follows. The first
of them is shown in Figure 6. Due to lack of theoretical knowledge it is not
possible to tell wether the reflected waves are shock pulses or rarefaction waves.
The first reflection results in approximately 34% decrease of the peak stress
level. The picture becomes even more complicated when the slower unloading
shock eventually catches up with the forward travelling phase transformation
shock. The evolution of the stress profile up to 90us is shown on Figure 5.

23



90%

80% -
70% +
60% -
50% -
40% -
30% -

Energy Dissipatior

20% -
10% -

0% T T T T T
0 20 40 60 80 100 120

Time (micr oseconds)

Fig. 7. Energy dissipation for a 10 us square pulse in adiabatic conditions.

The calculation show that dissipation levels goes from 10% at the end of the
pulse (T = 10us) to 42% at T = 22us when the faster unloading wave hits
the forward travelling transformation wave. The high stress levels are then
gradually reduced within the elastic limits. The energy dissipation reaches
approximately 80% at 100 us, shortly before the elastic front reaches the right
end.

4.2.2  Detwinning

The last model problem to be solved involved a simulation of the detwinning
process in SMA materials. The polynomial model was not originally designed
to take detwinning into account. However, if the material is in the austenite
state and the temperature is in the range M? < T < A the resulting
hysteresis due to phase transformation as predicted by the model will be close
to the actual stress-strain relationship due to detwinning. A detailed discussion
on how to use the polynomial model to to predict detwinning is given in
Section 5.4. In this numerical simulation the initial temperature is set to T, =
22 °C. The stress pulse has magnitude oy = 400M Pa which is sufficient to
complete the detwinning and then obtain the elastic response of the M? phase.
This implies that again we must expect a two forward propagating shocks as
in the previous adiabatic case. The unloading is completely elastic and we
expect to see a single linear shock, travelling fast enough to catch up with
the nonlinear shock caused by the detwinning. This is followed by a series of
reflections between the left end (which is stress free after the pulse is over)
and the forward propagating detwinning shock. The stress profile at several
different instances of time is presented on Figure 8 and completely matches
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the expectations.

Due to sequence of elastic waves reflecting off the left end (which cause the
stress to reverse sign) and off the detwinning (nonlinear) shock the energy
dissipation as a function of time (Figure 10) has a more complicated structure.
The dissipation quickly reaches ~ 75% as the initial unloading wave reaches
the nonlinear shock and reflects back (Figure 9). After each reflection off the
left end the stress changes sign and in effect nullifies with the left travelling
wave which causes a rise in the dissipation levels. Then the right-travelling
reflections reach the nonlinear shock, cause it to decrease further and reflect
as compressive left travelling waves causing a drop in the dissipation. It should
be noted that even though in the long term the dissipation stabilizes around
to 90% the material is permanently deformed. In order to recover its shape it
has to be reheated.

5 Dynamic material characterization

The dynamic response of a nearly equiatomic NiTi alloy rod was character-
ized with one dimensional wave propagation experiments in a Hopkinson bar
arrangement. We now turn to a description of this experiment.

5.1 Description of the Apparatus

Hopkinson bar apparatus has become standard in the characterization of the
dynamic response of materials; detailed descriptions are provided in many
handbooks and textbooks e.g. (Graff, 1975, pg. 128-134), and hence we provide
only a brief description here. A photograph of the experimental setup is shown
in Figure 11 and a schematic of the impact device is given in Figure 12.

The apparatus consists of a striker bar, an input bar and an output bar, all of
diameter d = 15.5mm and all made of a 4340 steel, quenched and tempered
to a martensitic state. The yield strength of these bars is about 1.8 GPa and
they remain elastic during the impact experiments. The density of the bars is
p = 7800kg/m?, the measured bar wave speed Cj, = /FEp/p = 5300m/s and
E is the modulus of elasticity of the steel bar. The striker bar (12) of length L
is propelled from an air gun at speeds in the range of 10 to 40 m/s. This striker
impacts the input bar which is 1.7m long; a one dimensional compression wave
propagates into both bars; since the striker bar is short, the reflected tension
pulse arrives at the striker-input bar interface at a time Tpyse = 2L/Ch; at
this point, the striker comes to a stop and is disengaged from the input bar.
Hence, a compression pulse of duration 7T}, is propagated down the length
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Fig. 11. Photograph of the Hopkinson bar experimental setup. The specimen is
visible at the top-right part of the photograph
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Fig. 12. Geometry and arrangement of strain gauges in Hopkinson apparatus. (Fig-
ure not drawn to scale)

of the input bar. This wave is coupled into the specimen which is in contact
with the far end of the input bar. Due to the impedance mismatch between
the specimen and the input bar, a part of the pulse is reflected back into the
input bar and a part of the pulse propagates into the specimen. A strain gage
mounted at about the middle of the input bar is used to monitor the incident
compressive pulse and the reflected tensile pulse propagating in the input bar.
The wave propagating through the specimen, gets coupled into the output bar,
again with a reflected component due to the impedance mismatch. The output
bar is free at the far end and so a tensile pulse reflects from the far end of the
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output bar and is unable to transmit into the specimen; hence the specimen is
loaded for only once. A strain gage mounted at the middle of the output bar
is used to monitor the strain pulses, in particular the first transmitted pulse,
in the output bar.

The main feature of the Hopkinson implementation of the dynamic experiment
is in the length of the specimen, L, which is quite long. This means that a
steady-state condition is not reached during the time 7, and one has to
deal with the propagation of the wave in the specimen material.

5.2 Specimen Preparation

In our experiments we used a single SMA specimen 345 mm long and two short
specimens of 25.4 mm length. All the specimens had diameter was 12.7 mm.
After machining the specimens to the appropriate lengths they were heated
to 540 °C' in standard atmosphere for 2 hours and furnace cooled. This pro-
cess was used to erase history of prior plastic deformation. A thin oxide layer
was formed during the heat treatment, but this does not affect the overall
response of the material. In the long bar, six strain gauges were placed at dis-
tances 10 mm, 20 mm, 40 mm, 80 mm, 160 mm and 320 mm from the impact
end. A high temperature strain gauge adhesive was used and the specimens
were then annealed at 100 C for 1 hour. Subsequently, the specimens were
cooled to dry ice temperature (-70 °C') and then brought to room temper-
ature for testing. All tests were performed at room temperature (nominally
20 °C) unless specified otherwise. A Differential Scanning Calorimeter (DSC)
was used to determine the transformation temperatures in the material. As
can be seen from the DSC measurements shown in Figure 13, under the indi-
cated temperature cycling, the specimens were in a twinned martensitic state
during the test. In order to obtain preliminary information on the mechan-
ical behavior of this material quasi-static compression tests were performed
on the short specimens in a standard testing machine. The first quasi-static
test was performed at room temperature to obtain the critical stress values o
and oy for onset and finish of detwinning as well as the transformation hard-
ening constants (Table 3). A second quasi-static test at elevated temperature
(T =60 °C') was used to get the elastic modulus of the austenite phase.

The stress-strain relationship obtained from the quasi-static test at room tem-
perature is shown in Figure 14 along with the predictions of the polynomial
model; the initial elastic modulus can be estimated to be 42G Pa; beyond
about 0.3% strain level, nonlinear response is observed and this corresponds
to detwinning of the martensite. At about 3% strain, there is a sharp increase
in the tangent modulus that corresponds to the exhaustion of detwinning.
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Table 3
Material parameters used in the SMA model

Material constant Value Description
EA 70 x 10° Pa Modulus of elasticity in austenite
EM 42 x 10° Pa Modulus of elasticity in martensite
H 0.03 Maximum transformation strain
do 7.0 x 105 Pa/(m*K)
Mef 6 °C Martensitic finish temperature
M©® 29 °C Martensitic start temperature
A°8 37 °C Austenitic start temperature
Aof 53 °C Austenitic finish temperature
s 150MPa Start of M! « M transition
oy 280MPa Completion of M? «— M? transition
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Fig. 13. Differential Scanning Calorimeter measurements of the SMA specimen.

5.3  Dynamic Results

As indicated earlier, in the Hopkinson bar experiment a 345 mm long rod in-
strumented with six strain gauges was placed behind the input bar. The output
from these gauges is shown in Figure 15. Strain gauge number 3 (40mm) suf-
fered a partial debond during the test and hence the results from this gauge
are not meaningful beyond the point marked by the dark dot in the figure.
The elastic wave in the input bar was not recorded due to an error in the de-
vice; all other gauges worked well and recorded the strain profile as the wave
propagated down the length of the SMA rod. An x-t diagram corresponding

29



Stress, MPa

-220-

——Model
Experiment

] ] ] ]
-0.04 -0.032 -0.024 -0.016 -0.008 0
Strain

Fig. 14. Quasi-static hysteresis of SMA specimen and simulation by polynomial
model.

to elastic wave propagation in this specimen is shown in Figure 16. The strain
gauge locations are indicated by the thin vertical lines and the leading edge
of the initial loading pulse is shown by the dark line; this pulse reaches each
one of the gauges at the time where the dark line intersects the vertical lines.
From the timing of the elastic wave arrival at each gauge, the elastic wave
speed was determined to be 2500 m/s. The elastic wave reaches the far end of
the specimen about 138 us after impact. The duration of the loading pulse is
about 90 us; and hence an unloading pulse propagates from down the speci-
men with the elastic wave speed (since the unloading is elastic); this wave is
shown by the line with an arrow at the tip. Time zero corresponds to the first
arrival of the loading pulse at the strain gauge in the input bar.

As seen in Figure 15, the strain in the first two gauges increases rapidly to
a level of about 1.3% and levels off as the load from the input bar levelled
off. The oscillations seen in these gauges near the plateau are Pochhammer-
Chree oscillations that appear in bars. At around 290 us the unloading wave
from the end of the loading pulse reaches the first two gauges and the strain
begins to decrease; however, because the strains beyond 0.3% were the result
of detwinning (see the quasi-static results in Figure 14), these strains are not
recovered and a permanent strain of about 1% is left at these locations. The
signal in gauge 4 clearly indicates the dispersion of the wave - higher strain
levels propagate at significantly slower speeds and arrive later at the gauge
location. Hence a broadening of the strain pulse can be seen - the peak in
the strain at gauge 4 occurs 75 us after elastic wave arrival while it occurs in
about 20 s in gauge 1. This delay also results in the peak strain not being
sustained for too long as the elastic unloading pulse reaches the gauge quickly;
once again a residual strain of peak strain - 0.3% is left at this gauge location.
The same behavior is seen in gauge 5 where due to its distance from the impact
end, and due to the slowness of the inelastic waves, the peak strain reached is
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Fig. 15. Strains measured by the gauges mounted on the SMA bar. Gauge 3 suffered
a partial debond at the point indicated by the dark circle and hence the data beyond
this time should not be interpreted.

400
350 |
300 |
250
200 |

150 |

Time - microseconds

100

50 |

0 50 100 150 200 250 300 350
Position - mm

Fig. 16. X-t diagram indicating arrival of the elastic wave front at the gauge loca-
tions.

only about 0.5%; once again a residual strain is left in this location. In gauge
6, the reflected wave from the end of the SMA rod (left free in this experiment)
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causes unloading of the gauge; a very small, but measurable permanent strain
or detwinning is observed in this location. Subsequent to the test, the rod was
heat treated through a temperature cycle taking it above A%/ first, holding for
1 hour and then cooling below M°/ and warming back to room temperature.
All strain gauges recovered their original state indicating full recovery of the
specimen.

The results of this experiment can be used to extract the dynamic stress-
strain response by applying the theory of one-dimensional wave propagation
in plastic rods due to (Rakhmatulin, 1945; Von Karman and Duwez, 1950;
Taylor, 1958). The idea is a simple extension of the rod theory for elastic
waves. Let us assume that stress is only a function of strain, i.r. o = o(e).
Then we can rewrite equation 1 in the form

/
Ut = wurx (51)
p

Note that this is not an incremental theory, but a total strain theory; therefore
unloading cannot be considered here. The wave speed C(¢g) of disturbances is
no longer a constant as in the linear elastic case, but a function of the stress
or strain:

O(e) = (52)

The main result of this one dimensional theory is that a given strain (or stress)
level will propagate into the rod with a characteristic speed given by equation
52. If the propagation speed of stress waves in a one-dimensional rod is known
(measured with strain gauges as in the experiment discussed above), equation
52 can be inverted to determine the stress-strain behavior of the material:

o(e) = [ o(Qdc = [ e (53

This representation of the wave speed is used to extract the constitutive be-
havior of the material (Bell, 1960; Kolsky and Douch, 1962). There exists a
critical point in the stress-strain curve: o’(¢) = 0. Strain amplitudes larger
than this cannot propagate through the material. Of course, in the experi-
ment discussed above, we have not reached this stage; in fact, this would be
of interest in determining the propagation of phase transformation fronts and
such experiments are in progress.

The propagation speeds of different strain levels were obtained from the re-
sults shown in Figure 15. The time of arrival of different strain levels at each
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Fig. 18. Stress-strain response evaluated from one-dimensional wave propagation
measurements (scatter plot) and quasi-static data (solid line).

one of the five gauges were determined from the strain measurements; the
speed of each strain level C'(¢) was then determined from the known distances
between the gauges. The variation of the wave speed with strain level is shown
in Figure 17; a smooth trendline is also shown in the figure. The elastic wave
speed is about 2500 m/s and all strain levels below about 0.1% travel with
this speed; this suggests that there is really no significant elastic region and
that even small strain levels are susceptible to dispersion. A large change in
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the wave speed occurs at around 0.3% strain; this corresponds to the onset
of massive detwinning deformation. Beyond this level, the wave speed drops
to about 1000 m/s and varies more slowly. If the averaged data on the wave
speed variation with strain level is used in equation 53, the resulting numerical
integration provides the stress strain relationship associated with the detwin-
ning deformation in the SMA rod. Such a relationship is shown in Figure 18.
The scatter in the plot is a result of the averaging of the noisy data in Figure
5.e; the solid line shows the trend of the data.

5.4 Calibration of the model

The Hopkinson bar experiment was done at room temperature and due to the
heat treatment of the specimen it was in fully twinned martensitic state. As
polynomial model was not designed to model the phenomenon of detwinning
we had to modify some of the parameters in Table 3 in order to obtain the
correct prediction shown on Figure 14.

The necessary modifications included lowering the martensitic start and fin-
ish temperatures M and M° by 20 °C. The effect of this change affects
the way the model sees the transformation surfaces on the phase diagram.
At room temperature the transformation lines for martensitic start and finish
deviate significantly from the almost straight-line approximation of the model
and become in effect parallel to the Temperature axis. If the test temperature
is known in advance, a correct shift in the M°° and M f will cause the model
to start and finish transforming the correct detwinning stress levels o, and
oy. Taking into account that the thermal stresses are several order of mag-
nitude less than the elastic ones and that no latent heat is generated during
detwinning we effectively model the material response by an isothermal path.
Figure 14 shows that the experimentally measured stress-strain response at
room temperature and the predictions of the polynomial model with the above
modifications taken into account are in good agreement.

6 Results and discussion

An indicated earlier, due to a trigger failure, the signal in the input bar was
lost so we had only the readings of the six strain gauges on the specimen. In the
numerical simulation we used the reading of the first gauge (at 10mm) as the
boundary condition and we compared the results at the remaining 5 gauges.
Gauge number 3 is not included in the modelling because it got unglued during
the test.
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We modelled the experimental results in two different ways. First we used the
polynomial SMA model with the calibration presented in Section 5.4 to predict
the strains at the gauge locations. We chose the adaptive FEM scheme because
of its accuracy and ability to predict precisely the positions of the both elastic
and transformation shocks. Since the only phase transition was detwinning
of martensite we used the isothermal solver. The results are presented on
Figure 19.

As expected from the model problem studied in section 4.2 the strain wave
splits into elastic and transformation front. The transformation front timing
and magnitude at all strain gauges is in excellent agreement with experiment.
The small wiggles observed at the first two gauges are due to surface effects
caused by the impacting projectile. Such effects cannot possibly be modelled
within a 1D formulation.

There is a noticeable disagreement in the timing of the elastic fronts. The
reason for this is the deviations from linear behavior for small strains. The
polynomial model always predicts a linear response until the beginning of
phase transition. However an inspection of Figure 14 shows a more oblique
cubic-like stress-strain relationship for small strain values which is at the root
of the disagreement. To verify this explanation we preformed an independent
numerical run with the hysteresis on Figure 14 being modelled by a sixth
degree polynomial. The curve fit was made in least squares sense and the
unloading is assumed linear with the modulus of elasticity of martensite as
measured by the quasi-static experiments. The results are shown on Figure 20.
This time the wave profiles are matched much more closely and the small
disagreements can be attributed to measurement errors and effects of lateral
inertia not included in the simulation.

Two things should be noted about this curve fit. First, unlike a constitutive
model based on physical principles such an approach will only work for a
particular SMA material and particular operating temperature. Secondly, due
to the fact that the transformation is mostly detwinning of martensite there
is no significant release of latent heat, so the quasi-static isothermal hysteresis
can be assumed very close to the adiabatic one.

7 Conclusions

We explored several different methods for the numerical treatment of the im-
pact loading problem. Both explicit FD schemes and FEM methods were able
to accurately reproduce a known analytical solution to the Riemann problem.
The FD scheme considered are fast and easy to implement and the solution
captures the main characteristics of the wave profile. However the scheme pro-

35



0.0% et
-0.2% - 4
v
-0.4% -
£ -0.6% -
o
B 0.8%- T e
-1.0% - ",fi"
Gauges 12,4,5,6 (model)
-1.2% -
Gauges 12,4,5,6 (experiment)
-1.4% ‘ \ \
0 50 100 150 200
Time (micr oseconds)

Fig. 19. And adaptive FE analysis of experimental data under isothermal conditions.
The first strain gauge is used to define the boundary condition.
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Fig. 20. And adaptive FE analysis of experimental data under isothermal conditions
and a curvefit of the hysteresis. The first strain gauge is used to define the boundary
condition.

duces large amounts of numerical dissipation which lead to overly smoothed
solutions. This drawback can be mitigated by careful selection of the spatial
and time discretization.

As a whole the FEM methods showed a definite advantage in precision and
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accuracy over FD schemes. The solutions coincide completely with the analyt-
ical solution with a subsonic shock described in (Bekker, 2001). Further, their
main disadvantage - slow implicit time integration - can be successfully over-
come by using adaptive techniques. The use of mesh adaptivity also greatly
increases the robustness of the scheme.

On the experimental side, it has been shown that an instrumented Hopkin-
son bar can be used effectively to evaluate the wave and phase propagation
characteristics in the SMA rods. Through the use of multiple strain gages,
the phase velocity at the different strain levels was obtained easily; a defor-
mation theory of plasticity approach was used to interpret the dispersion in
terms of the underlying dynamic material response of the material. The ma-
terial and environmental conditions used in these experiments correspond to
a detwinning deformation of the martensitic phase, but the methods can be
easily adapted to stress induced martensitic transformation in tests at higher
temperatures.

Through careful calibration of the polynomial SMA model we were also able
to predict accurately the peak stress levels when compared with experimental
results. A much better predictions however are obtained by curve fitting the
experimental hysteresis. The main drawback of the polynomial SMA model is
its initial linear response and the existence of kinks on the hysteresis curve.
Further work is required to improve the model and capture more closely the
detwinning phenomenon. We would also like to point out the need to develop
analytical solutions to more complicated initial-boundary value problems with
the type of nonlinearities introduced by the SMAs.

Finally, we would like to point out the excellent energy dissipation capabilities
of SMA rods. The model study in Section 4.2 suggests that SMAs can be used
in a very effective manner as damping and shock-absorption devices. The work
can be extended to include more complicated 2- and 3-D geometries which will
give true understanding of their potential in that area.
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