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Motivation

• Shape Memory Polymer (SMP) Advantages
• Ability to recover strains up to 400%
• Lightweight and Inexpensive (Compared to Shape 

Memory Alloys)

• Applications
• Deployable Space Structures
• Flexible Biodegradable Applications (i.e. sutures)
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Deployable Space Structure

LIDAR 3-meter-class deployable 
reflector system

Advantages of EMC hinges comparing with 
mechanical actuators:
• Eliminate the need for mechanical latches and  

the post-deployed micro-dynamic instabilities. 
• Provide a low shock and controlled 

deployment. 
• Lightweight, simple, and low coefficient of 

thermal expansion.
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Flexible Biodegradable Sutures

The suture, in its temporary shape at the room 
temperature, is placed loosely on the wound. Upon 
being heated to the body temperature, the suture 
shrinks to its permanent shape. After the wound 
heals, the suture is eventually absorbed.
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Shape Memory Effect

Schematic demonstration of the 
molecular mechanism of the 

thermally induced shape-memory 
effect for a multi-block copolymer.



Texas Institute for Intelligent Bio-Nano Materials and Structures for Aerospace Vehicles

Thermomechanical Loading

A typical shape memory thermal/loading cycle: 
1. Loading at high temperature.
2. Cooling at fixed strain.
3. Unloading at low temperature.
4. Heating at zero stress. 

Path 5 corresponds to heating at fixed strain befor e unloading, and path 6 to Heating at fixed 
strain after unloading.
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Research Objectives

• Constitutive Model
• Nonlinear (Shape Recovery vs. Time)
• Rate Dependent (i.e. Heating, Loading Rate)
• Account for Large Deformations 

(Applied Strain > 10% )

• Experimental Focus
• Calibrate Model
• Verify Simulation Results
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Constitutive Modeling of SMPs

• Bhattacharyya and Tobushi, 2000. Rheological approaches 
with no strain storage and release mechanisms.

• Rao, 2002. Dividing the SMP into four parts of different 
molecular structures and crystallization, and deriving the 
overall constitutive equation using a mixture theory.

• Liu and Gall, 2005. A 1-D small-strain model based on 
strain storage and release mechanisms at the molecular 
level. Pertinent only to the particular thermal/loading paths 
of their experiments.

• Present theory. A 3-D thermoelastic constitutive model for 
large deformation of SMPs under arbitrary thermal/loading 
paths.
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Constitutive Equations

State variables:
• Deformation x(X, t),
• Deformation gradient F(X, t),
• Piola-Kirchhoff S(X, t),
• Temperature θ (X, t).
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Constitutive Assumptions
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Experimental Setup

• Electromechanical, Screw-Driven Test Frame
– MTS Alliance RT-1

• MTS 1000 N Load Cell

• MTS 2000 N Pneumatic Grips

• Thermcraft Oven with 
Temperature Controller

• Optical Strain Measurement
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Strain Measurement

• Visual Imaging Correlation (VIC) System

• Two Camera Setup

• Tracks “Speckled” Pattern
– Large Travel Capability

• Provides Full-Field Strain 
Measurements
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Specimen Preparation

• Provided by Cornerstone Research Group, Inc.

• Dogbone Specimens (ASTM D638)

– Cut via Water-jet

• Gauge Length – 57 mm

• Gauge Width – 12.7 mm

• High-Contrast Speckled
Pattern Painted on Surface
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Material Properties

• Glass Transition Temperature – 58°C
– Measured via ThermoMechanical Analyzer (TMA)

• Coefficient of Thermal Expansion – 8.6E-07/°C

• Young’s Modulus 

– Glass Phase: 1.4 GPa 

– Rubber Phase: N/A

• Tensile Strength (Glass Phase) ~ 20 MPa
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Test Matrix

Test Case Test Number Prestrain Recovery 
Temperature

Recovery Stress 
(MPa)

Recovery 
Strain Rate

A.1.1.1
εo = 10% T = Tg + 30 

(~90°C)
σ1 = 0

Ou
tp

ut

A.1.1.2 σ2 = 1
A.1.1.3 σ3 = 2
A.2.1.1

εo = 25% T = Tg + 30 
(~90°C)

σ1 = 0

Constant Stress 
Recovery   

A.2.1.2 σ2 = 1
A.2.1.3 σ3 = 2
A.3.1.1

εo = 50% T = Tg + 30 
(~90°C)

σ1 = 0
A.3.1.2 σ2 = 1
A.3.1.3 σ3 = 2
A.4.1.1

εo = 100% T = Tg + 30 
(~90°C)

σ1 = 0
A.4.1.2 σ2 = 1
A.4.1.3 σ3 = 2

Constant Strain 
Rate Recovery

B.1.1.1 εo = 10% T = Tg + 30 
(~90°C)

Ou
tp

ut

έ1 = 10-2

B.1.1.2 έ2 = 10-3

B.2.1.1 εo = 25% T = Tg + 30 
(~90°C)

έ1 = 10-2

B.2.1.2 έ2 = 10-3

B.3.1.1 εo = 50% T = Tg + 30 
(~90°C)

έ1 = 10-2

B.3.1.2 έ2 = 10-3

B.4.1.1 εo = 100% T = Tg + 30 
(~90°C)

έ1 = 10-2

B.4.1.2 έ2 = 10-3
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Testing Parameters

1.1. Initial StateInitial State
–– Room Temperature (T < TRoom Temperature (T < Tgg) ) 
–– StressStress--Free and StrainFree and Strain--Free Free 

2.2. Heat Material to 90Heat Material to 90°°C (T > TC (T > Tgg) at 2) at 2°°C/minC/min
–– Maintain ZeroMaintain Zero--Stress (Thermal Expansion Permitted)Stress (Thermal Expansion Permitted)

3.3. Strain Material to Predetermined LevelStrain Material to Predetermined Level
–– Tests Included Strain Levels of 10, 25, 50, and 100%Tests Included Strain Levels of 10, 25, 50, and 100%

4.4. Cool Material to Room Temperature (T < TCool Material to Room Temperature (T < Tgg))
–– Maintain Deformed Shape (Strain = Constant)Maintain Deformed Shape (Strain = Constant)
–– Thermal Stress InducedThermal Stress Induced

5.5. Unload Material to ZeroUnload Material to Zero--StressStress
6.6. Heat Material to 90Heat Material to 90°°C at 2C at 2°°C/minC/min
–– Shape Recovery OccursShape Recovery Occurs



Texas Institute for Intelligent Bio-Nano Materials and Structures for Aerospace Vehicles

Results

11% Applied Strain
1.5% Unrecoverable Strain
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Results
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Results, cont’d.

52% Applied Strain
2.4% Unrecoverable Strain
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Results, cont’d.

107% Applied Strain
4.5% Unrecoverable Strain
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Results, cont’d.

Percentage of Unrecoverable Strain/Applied Strain 
Approaches Asymptotic Value
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Conclusions

• Successful 10, 25, 50, and 100% Experimental Tests 
Performed

• Nonlinear Shape Recovery Observed
– Majority Occurring Shortly After T Exceeds T g

• Important Application Consideration:
– Percentage of Unrecoverable Strain/Applied Strain

• Unique Ability to Perform Complex 
Thermomechanical Characterization for Large 
Deformations 
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Future Work

• Continue Zero-Stress Recovery Tests
– Greater than 100% Strain

• Investigate Rate Dependence
– Heating/Cooling Rate
– Loading Rate

• Perform Tests with Recovery Stress > 0

• Investigate Effects of Final Heating/Cooling 
Temperatures

• Obtain Additional Parameters as Demanded by 
Model Development
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